R语言:卡方检验

χ2检验(Chi-Square Test)是一种用于检验分类变量之间是否存在相关性的统计方法。χ2检验的原理基于观察到的频数与期望频数之间的偏差来判断分类变量之间是否存在显著的关联。

χ2检验的原理可以概括为以下几个步骤:

建立假设: 首先,需要建立零假设(H0)和备择假设(H1)。在χ2检验中,零假设通常是假设两个分类变量之间没有关联,备择假设则是它们之间存在关联。

计算期望频数: 根据观察到的数据计算期望频数。期望频数是基于零假设下的预期频数,它告诉我们如果零假设成立,我们期望在每个组中看到多少观察值。

计算χ2统计量 :根据观察频数和期望频数计算χ2统计量。χ2统计量衡量了观察值与期望值之间的偏差程度,它的计算公式为:χ2 = Σ [(观察频数 - 期望频数)^2 / 期望频数]。
确定显著性水平: 选择显著性水平(通常为0.05),用来评估χ2统计量的显著性。

比较χ2统计量与临界值:根据自由度和显著性水平查找χ2分布表,找到临界值。将计算得到的χ2统计量与临界值进行比较。

做出决策: 如果计算得到的χ2统计量大于临界值,则拒绝零假设,认为分类变量之间存在关联;如果小于临界值,则接受零假设,认为分类变量之间没有关联。

通过以上步骤,χ2检验可以帮助我们判断分类变量之间是否存在关联,并评估这种关联的显著性。

这个意思是根据给定的数据,对比了男性和女性病例的阳性率,并进行了χ2检验来评估两者之间的差异是否具有统计学意义。

例子:

男性病例总数为 7,866,其中阳性病例数为 342,阳性率为 4.35%。

女性病例总数为 6,038,其中阳性病例数为 310,阳性率为 5.13%。

进行χ2检验后得到的结果是:

χ2值为 4.726。

P值为 0.030。

在这种情况下,通过对比两个性别的阳性率并进行χ2检验,发现两个性别之间的差异具有统计学意义。也就是说,男性和女性病例的阳性率之间的差异不太可能是由随机因素引起的,而可能存在有意义的关联或差异。

需要注意的是,P值(显著性水平)小于0.05,这意味着我们可以以95%的置信度拒绝零假设,即男性和女性病例的阳性率之间存在显著差异。

使用R语言实现卡方检验

复制代码
> table(MP2064_year_jijie$性别,MP2064_year_jijie$检测结果)
    
     阳性 阴性
  男 1507 1126
  女 1429  971

我们看到这个数据男性阳性人数为1507,阴性为1126,女性阳性为1429,阴性为971,我们使用卡方检验看一看阳性率是否在性别上存在差异。

复制代码
> chisq.test(table(MP2064_year_jijie$性别,MP2064_year_jijie$检测结果))

	Pearson's Chi-squared test with Yates' continuity correction

data:  table(MP2064_year_jijie$性别, MP2064_year_jijie$检测结果)
X-squared = 2.6543, df = 1, p-value = 0.1033

我们看到,χ2=2.6543,自由度为1,p=0.1033>0.05,所以可以认为阳性率在性别上的分布没有差异。

复制代码
> table(cil_jiahuanzhehao_xiuyear$性别,cil_jiahuanzhehao_xiuyear$检测结果)
    
     阳性 阴性
  男 3148 2963
  女 2912 2402
复制代码
> chisq.test(table(cil_jiahuanzhehao_xiuyear$性别,cil_jiahuanzhehao_xiuyear$检测结果))

	Pearson's Chi-squared test with Yates' continuity correction

data:  table(cil_jiahuanzhehao_xiuyear$性别, cil_jiahuanzhehao_xiuyear$检测结果)
X-squared = 12.183, df = 1, p-value = 0.0004823

换一组数据,就有了差异。

相关推荐
Faker66363aaa5 小时前
工业场景下护目镜佩戴检测与安全合规性评估_Faster_R-CNN_X101-32x4d_FPN_PISA模型详解
安全·r语言·cnn
WW、forever5 小时前
【服务器-R环境配置】导出配置文件并重建
运维·服务器·r语言
Faker66363aaa19 小时前
使用Faster R-CNN实现胚胎发育阶段自动检测与分类——基于R50-FPN模型与COCO数据集训练
分类·r语言·cnn
Lun3866buzha1 天前
摩托车目标检测与识别|基于Mask R-CNN_x101-64x4d_FPN_1x_COCO模型的实现
目标检测·r语言·cnn
天桥下的卖艺者3 天前
R语言两种方法手搓竞争风险模型(1)
开发语言·r语言
Biomamba生信基地4 天前
空间转录组NMF降维分群
r语言·单细胞·空间转录组
Faker66363aaa5 天前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
Liue612312316 天前
自卸车多部件识别 _ Mask R-CNN改进模型实现(Caffe+FPN)_1
r语言·cnn·caffe
jiang_changsheng8 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言