机器学习——5.案例: 乳腺癌预测

案例目的

通过已标注的数据,训练出模型来预测患者是否有患乳腺癌。

该问题属于二分类问题,所以可以使用Sigmoid激活函数,损失用BCE函数

代码逻辑步骤

  1. 读取数据
  2. 训练集与测试集拆分
  3. 数据标准化
  4. 数据转化为Pytorch张量
  5. label维度转换
  6. 定义模型
  7. 定义损失计算函数
  8. 定义优化器
  9. 定义梯度下降函数
  10. 模型训练(正向传播、计算损失、反向传播、梯度清空)
  11. 模型测试
  12. 精度计算

代码实现

python 复制代码
import torch
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


df = pd.read_csv('/Volumes/Sophia/机器学习/day03/code/breast_cancer.csv')
X = df[df.columns[0:-1]].values
Y = df[df.columns[-1]].values
# 数据集拆分
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=5)

# 数据标准化
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)

# 转化为张量
X_train = torch.from_numpy(X_train.astype(np.float32))
X_test = torch.from_numpy(X_test.astype(np.float32))
Y_train = torch.from_numpy(Y_train.astype(np.float32))
Y_test = torch.from_numpy(Y_test.astype(np.float32))
# 标签转化为二维数据
# print(Y_train.shape)
Y_train = Y_train.view(Y_train.shape[0],-1)
Y_test = Y_test.view(Y_test.shape[0],-1)

# 定义模型
class Model(torch.nn.Module):
    def __init__(self,n_input_features):
        super(Model,self).__init__()
        self.linear = torch.nn.Linear(n_input_features,1)
    def forward(self,x):
        y = torch.sigmoid(self.linear(x))
        return y

n_features = X_train.shape[1]    
# 定义损失函数
model = Model(n_features)
loss = torch.nn.BCELoss()
# 定义优化器
# 学习率
learning_rate = 0.001
optimzier = torch.optim.SGD(model.parameters(),lr=learning_rate)
# 定义梯度下降函数
def gradient_descent():
    pre_y = model(X_train)
    l = loss(pre_y,Y_train)
    l.backward()
    optimzier.step()
    optimzier.zero_grad()
    return l,list(model.parameters())

# 模型训练
for i in range(500):
    l,pa = gradient_descent()
    if i % 50 == 0:
        print(l,pa)

# 模型测试
index = np.random.randint(0,X_test.shape[0])
pre = model(X_test[index])
print(pre,Y_test[index])

# 计算模型准确率
pres_y = model(X_test).round()
result = np.where(pres_y==Y_test,1,0)
ac = np.sum(result)/result.size
print(ac)
相关推荐
聆风吟º11 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys11 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567811 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子11 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能12 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448712 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile12 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57712 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥12 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty72512 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai