这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8 个 b i t bit bit 位,但是在 C语言 中除了 8 b i t bit bit 的 c h a r char char 之外,还有 16 b i t bit bit 的 s h o r t short short
类型,32 b i t bit bit 的 l o n g long long 类型(要看具体的编译器),另外,对于位数大于 8 位的处理器,例如 16 位或者 32 位的处理器,由于寄存器宽度大于一个字节,那么就必然存在着如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16 b i t bit bit 的 s h o r t short short 类型 x x x ,在内存中的地址为 0 x 0010 0x0010 0x0010, x x x 的值为 0 x 1122 0x1122 0x1122 ,那么 0 x 11 0x11 0x11 为高字节, 0 x 22 0x22 0x22 为低字节。对于大端模式,就将 0 x 11 0x11 0x11 放在低地址中,即 0 x 0010 0x0010 0x0010 中, 022 022 022 放在高地址中,即放在 0 x 0011 0x0011 0x0011 中。而小端模式,刚好相反。
我们常用的 x86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些 ARM 处理器还可以由硬件来选择时大端模式还是小端模式
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
我们来分析return (*(char*)&i);这句代码:
我们取出变量 i i i 的地址,因为 c h a r char char* 型指针只会访问一个字节的内容,所以将其强制类型转换成 c h a r char char* 类型,再对其进行解引用。
同时我们还知道:一个变量的地址,是其所有字节的地址中,地址最小的字节的地址。因此解引用得到的是 i i i 中最小字节地址所存储的内容,如果存储值为 1,则为小端存储,如果为 0,则为大端存储
当然,,我们还可以用联合体来判断
c复制代码
int check_sys()
{
union
{
int i;
char c;
}un;
un.i = 1;
return un.c;
}
关于联合体的知识,我们放到后面去讲
1.3、整型练习
练习一:
c复制代码
#include<stdio.h>
int main()
{
char a = -1;
signed char b = -1;
unsigned char c = -1;
printf("a=%d, b=%d, c=%d\n", a, b, c);
return 0;
}
首先我们来看char a = -1;: c h a r char char 类型是 ( s i g n e d ) c h a r (signed)char (signed)char 还是 ( u n s i g n e d c h a r ) (unsigned char) (unsignedchar) 取决于具体编译器的实现,但大部分是(signed)char。
-1 的补码是 11111111 11111111 11111111 11111111(整数默认4个字节),因为 c h a r char char 只有一个字节大小,发生截断, a a a 中放的是 11111111。同理char b=-1中 b b b 中放的也是11111111。
接下来,我们来看unsigned char c = -1;: c c c 中存放的也是 11111111,虽然 -1 是负数,但是存还是照样存的(先把数据存进去再说)
虽然 a b c abc abc 里存的都是 8 个 1 ,但以什么方式看待这 8 个 1 是不同的,对 a b ab ab 来说,他们认为 8 个 1 是 -1,而对 c c c 来说,他认为 8 个 1 是 255。
再来看最后一句,首先,我们要知道%d是以有符号整型来打印,打印 a b c abc abc 时,他们要先发生整形提升(详情请看【C语言】------详解操作符(下))。
对 a b ab ab 来说他们是有符号类型,整形提升按他们的符号位进行提升,即 11111111 11111111 11111111 11111111,补码转为源码,打印的结果是 -1。
而对于 c c c 来说他是无符号类型,整形提升高位补 0,即 00000000 00000000 00000000 11111111,因为首位是 0,被认为是正数,正数的原反补码相同,结果为 255。
答案:-1、-1、255
练习二:
c复制代码
#include<stdio.h>
int main()
{
char a = -128;
char b = 128;
printf("a=%u, b=%u\n", a, b);
return 0;
}
我们先来看 a a a
首先,我们来看 -128 的原码 反码 补码
原码:10000000 00000000 00000000 10000000
反码:11111111 11111111 11111111 0111111
补码:11111111 11111111 11111111 10000000
a a a 存储时,发生截断,存后面 8 个 b i t bit bit 位,即 10000000
%u是以无符号整型来打印数据,打印前, a a a 先发生整形提升,因为 c h a r char char 为有符号类型,整型提升按符号位提升,即 11111111 11111111 11111111 1000000,而%u认为他是无符号数,因此打印的是一个很大的数。
同理, b b b 也是类似的分析方法
答案:a=4294967168, b=4294967168
练习三:
c复制代码
#include<stdio.h>
#include<string.h>
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
}
让我们一起来分析这道题
数组 a a a 中存放的是 c h a r char char类型 的数据,通过 f o r for for 循环,依次放入 -1,-2,-3······ 等数据,循环 1000 次。而因为 a a a 中元素是 c h a r char char类型,范围是 -128至127,因此放入的数据会周期循环。
而题目要求打印的是strlen(a)的值,我们知 s t r l e n strlen strlen函数 是计算字符串的长度,遇到 '\0' 停止计算,而 '\0' 的本质是 0,因此这题的核心思路就是:计算第一次放入0,是第几个数放入,再减去一,即可知道前面翻入几个数,即字符串长度。
答案:255
练习四:
c复制代码
#include<stdio.h>
int main()
{
unsigned char i = 0;
for (i = 0; i <= 255; i++)
{
printf("hello world\n");
}
return 0;
}
该代码会打印多少个 " h e l l o w o r l d " "hello world" "helloworld" 呢?是 256 256 256 个吗?
答案是:死循环
因为 i i i 是 u n s i g n e d c h a r unsigned char unsignedchar 类型,他的数据范围是 0-255,当值为 255 即 11111111 时,加 1 为 100000000,因为只能存 8 比特位,发生截断,即 00000000,再不断加一,如此往复,永远跳不出循环。
c复制代码
#include<stdio.h>
int main()
{
unsigned int i;
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
}
return 0;
}
首先我们来看 p t r 1 ptr1 ptr1:& a a a 取出的是整个数组的地址,+1 则是跳过了整个数组,之后将该地址强制类型转换成 i n t int int * 类型。%x 是以十六进制的方式打印数据, p t r 1 [ − 1 ] ptr1[-1] ptr1[−1] 等价于 * ( p t r − 1 ) (ptr -1) (ptr−1),由于 p t r 1 ptr1 ptr1 是整型指针,-1 后退 4 个字节指向元素 4
图示:
接着我们来看 p t r 2 ptr2 ptr2,首先 a a a 是数组首元素的地址,取出后将其强制类型转换成整型变量,后面 +1,即数学上的+1,指针向后移动一位。
再将该整数强制类型转换成整型指针,最后,以十六进制打印 p t r 2 ptr2 ptr2 解引用的值,因为强转成 i n t int int* 指针,所以访问权限为 4 个字节。
对于 32 位( f l o a t float float) 的浮点数,最高的一位存储的是符号位 S,接着 8 位存储指数位 E,剩下的 23 位存储有效数字 M
而对于 64 位( d o u b l e double double) 的浮点数,最高的一位存储的是符号位S,接着11位存储指数位E,剩下的52位存储有效数字M
2.3、浮点数的存储过程
IEEE 754 对有效 数字 M 和 指数 E 还有一些特别规定
我们前面说过,M 的取值 1 < = M < 2 1<=M<2 1<=M<2 ,也就是写成 1. x x x x x 1.xxxxx 1.xxxxx 的形式,其中 xxxxx 是小数部分。IEEE 754 中规定,计算机那边存储 M 时,默认这个数的第一位总是 1 ,因此1可以被舍去,只保留后面的小数部分,比如保存 1.01 时,只存储 01。等到读取的时候,再把第一位的 1 加上去。这样做的目的是可以节省 一位有效数字的空间
至于指数E,则更为复杂一些:
首先,规定 E 是一个无符号整数。这样,如果 E 为 8 位,他的存储范围是 0~255 ,如果 E 为 11 位,他的存储范围则是 0~2047。但是,我们知道,指数位是可以有负数 的,所以 IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间值,对于 8位 的 E,这个中间值是 127 ,对 11位 的E这个中间值是 1023。比如: 2 10 2^{10} 210 ,他的 E 为 10,所以存储为 32 位浮点数时,必须保存成 10+127=137 ,即 10001001 。