【自动驾驶|毫米波雷达】非相参积累与恒虚警率检测

目录

[非相参积累(Non-coherent combing)](#非相参积累(Non-coherent combing))

[1. 非相参积累是什么?](#1. 非相参积累是什么?)

[2. 为什么要进行非相参积累?](#2. 为什么要进行非相参积累?)

[3. 如何实现非相参积累?](#3. 如何实现非相参积累?)

[恒虚警率检测(CFAR:Constant False Alarm Rate)](#恒虚警率检测(CFAR:Constant False Alarm Rate))

1.CFAR概念引入

[2. CFAR算法思想](#2. CFAR算法思想)

[1)单元均值恒虚警(Cell Average CFAR, CA-CFAR)](#1)单元均值恒虚警(Cell Average CFAR, CA-CFAR))

[2)最大单元均值恒虚警 (Greatest of Cell Average CFAR, GOCA-CFAR)](#2)最大单元均值恒虚警 (Greatest of Cell Average CFAR, GOCA-CFAR))

3) 最小单元均值恒虚警 (Smallest of Cell Average CFAR, SOCA-CFAR) 最小单元均值恒虚警 (Smallest of Cell Average CFAR, SOCA-CFAR))


非相参积累(Non-coherent combing)

上篇文章提到在慢时间傅里叶变换(Doppler FFT) 后,计算机可以得到目标的距离及位置信息,下一步会进行非相参积累,流程如下:

非相参积累的位置

1. 非相参积累是什么?

非相参积累是指不利用信号的相位关系直接进行幅度或功率叠加的积累方法。非相参积累是一种信号处理技术,它采用平均多次采样的信号,以提高信号的信噪比。在非相参积累中,每个采样的时间和幅度不一定相同,因此不需要考虑采样点之间的相位关系。在每个采样周期内,信号和噪声的幅值相加,并进行平均,以获得更好的信噪比。非相参积累主要用于低信噪比环境下,如雷达和卫星通信等。

2. 为什么要进行非相参积累?

非相参积累通常用于将多个雷达天线的信号合并,并获得更高的信噪比。

3. 如何实现非相参积累?

具体做法为:将各个通道的数据取平方并在通道维度累加

恒虚警率检测(CFAR:Constant False Alarm Rate)

1.CFAR概念引入

目标检测是雷达系统的一项重要任务,本质是将输入信号和阈值作比较,判断目标是否存在。设x(t)是关于时间t的输入信号,n(t)是背景噪声,s(t)是目标信号,则目标检测可以建模为一个二元假设检验问题:

表示输入信号中无目标信号的假设,表示输入信号中有目标信号的假设。表示判定为真,输入信号中无目标信号,表示判定为真,输入信号中有目标信号,则每次检测可能有以下四种结果:

设置算法阈值T:

式中是噪声功率的估计值,α是缩放因子,也叫阈值因子。从公式中可以发现,恒虚警率检测算法的阈值能够根据噪声功率估计值自适应待处理的数据。通过调节阈值因子α,算法将虚警概率 保持在指定值,因此叫做恒虚警率检测

2. CFAR算法思想

目标检测方法的核心是阈值法 。如果雷达回波大于阈值,则显示检测到目标,否则视为噪声。 故恒虚警检测技术是可以理解为雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术。

噪声功率估计方法不是唯一的,因此产生了各种恒虚警率检测方法。

1)单元均值恒虚警(Cell Average CFAR, CA-CFAR)

噪声功率估计值为:

CA-CFAR通过计算邻域内的信号功率的平均值,然后与目标信号的功率进行比较,从而确定是否存在虚警信号。CA-CFAR算法的优点是简单易实现,但对于非均匀背景噪声的情况下可能存在一定的误报率。

2)最大单元均值恒虚警 (Greatest of Cell Average CFAR, GOCA-CFAR)

噪声功率估计值为:

GOCA-CFAR通过选择邻域内信号功率的最大值 作为参考值,并与目标信号的功率进行比较。相比于CA-CFAR算法,GO-CFAR算法能够更好地适应非均匀背景噪声的情况,并减少误报率。

3) 最小单元均值恒虚警 (Smallest of Cell Average CFAR, SOCA-CFAR)

噪声功率估计值为:

SOCA-CFAR选择邻域内信号功率的最小值作为参考值,并与目标信号的功率进行比较。SO-CFAR算法在一些特定的应用场景中表现出色,但在存在强干扰的情况下可能会导致较高的误报率。

图片来源:

恒虚警检测(Constant False Alarm Rate, CFAR)_恒虚 警率(constant?false?alarm?rate,?cfar)-CSDN博客

相关推荐
有才不一定有德10 分钟前
深入剖析 MetaGPT 中的提示词工程:WriteCode 动作的提示词设计
人工智能·aigc·提示词工程
花月mmc34 分钟前
CanMV-K230 AI学习笔记系列
人工智能·笔记·学习
s1ckrain1 小时前
【论文阅读】ON THE ROLE OF ATTENTION HEADS IN LARGE LANGUAGE MODEL SAFETY
论文阅读·人工智能·语言模型·大模型安全
Jackilina_Stone1 小时前
【论文|复现】YOLOFuse:面向多模态目标检测的双流融合框架
人工智能·python·目标检测·计算机视觉·融合
Java中文社群1 小时前
Coze开源版?别吹了!
人工智能·后端·开源
机器之心1 小时前
硬核「吵」了30分钟:这场大模型圆桌,把AI行业的分歧说透了
人工智能
音视频牛哥1 小时前
RTSP|RTMP播放器 in Unity:开源不够用?从工程视角重新定义播放器选型
人工智能·计算机视觉·直播
不失者2 小时前
关于AI时代的一点思考
人工智能·后端·程序员
好奇心笔记2 小时前
D1数据库实战:SQLite在云端的华丽转身
人工智能·后端
wayman_he_何大民2 小时前
🚀 RAG系统架构:进阶版
人工智能