【人工智能基础】RNN实验

一、RNN特性

权重共享

wordi · weight + bais

持久记忆单元

wordi · weightword + baisword + hi · weighth + baish

二、公式化表达

ht = f(h~t - 1~, xt)

ht = tanh(Whhh~t - 1~ + Wxhxt)

yt = Whyht

三、RNN网络正弦波波形预测

环境准备

python 复制代码
import numpy as np
import torch
from torch import nn,optim
from matplotlib import pyplot as plt

# 时间轴采样数
num_time_steps = 50
input_size = 1
hidden_size = 16
output_size = 1
lr = 0.01

RNN类

python 复制代码
class Net(nn.Module):
    def __init__(self,):
        super(Net, self).__init__()
        self.rnn = nn.RNN(
            input_size = input_size, 
            hidden_size = hidden_size, 
            num_layers = 1,
            # 格式为[batch, seq, feature]
            batch_first = True
        )
        for p in self.rnn.parameters():
            nn.init.normal_(p,mean=0.0, std=0.001)
        self.linear = nn.Linear(hidden_size, output_size)

    def forward(self, x, hidden_prev):
        out, hidden_prev = self.rnn(x, hidden_prev)
        # [1, seq, h] => [seq, h]
        out = out.view(-1,hidden_size)
        # [seq, h] => [seq, 1]
        out = self.linear(out)
        # [seq, 1] => [1, seq, 1], 需要和y做均方差
        out = out.unsqueeze(dim=0)
        return out, hidden_prev.clone()

正弦数据构建函数

python 复制代码
def create_image():
    start = np.random.randint(3, size=1)[0]
    time_steps = np.linspace(start, start + 10, num_time_steps)
    data = np.sin(time_steps)
    data = data.reshape(num_time_steps, 1)
    x = torch.tensor(data[:-1]).float().view(1, num_time_steps - 1, 1)
    y = torch.tensor(data[1:]).float().view(1, num_time_steps - 1, 1)
    return time_steps,x, y

训练模型

python 复制代码
model = Net()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)

hidden_prev = torch.zeros(1,1, hidden_size)
for iter in range(6000):
    time_steps,x, y = create_image()
    output, hidden_prev = model(x, hidden_prev)
    hidden_prev = hidden_prev.detach()

    loss = criterion(output,y)
    model.zero_grad()
    loss.backward()
    for p in model.parameters():
        torch.nn.utils.clip_grad_norm_(p,10)
    optimizer.step()

    if iter % 1000 == 0:
        plt.plot(time_steps[:-1], x.ravel(), c = 'b')
        plt.plot(time_steps[:-1], y.ravel(), c= 'r')
        plt.plot(time_steps[:-1], output.detach().numpy().ravel(), c= 'g')
        plt.show()
        print('Iteration:{} loss {}'.format(iter, loss.item()))

可以看到第二次绘制图像的时候,输出曲线基本拟合了目标曲线

图像预测

python 复制代码
time_steps,x, y = create_image()

predictions = []
# input = x[:, 0, :]
for i in range(x.shape[1]):
    input = x[:, i, :].view(1, 1, 1)
    (pred, hiden_prev) = model(input, hidden_prev)
    input = pred
    predictions.append(pred.detach().numpy().ravel()[0])

x = x.data.numpy().ravel()

y = y.data.numpy()
plt.scatter(time_steps[:-1], x.ravel(), s=90)
plt.plot(time_steps[:-1], x.ravel())

plt.scatter(time_steps[1:],predictions)
plt.show()
    

输出的预测曲线基本与目标曲线相同


p.s. 最后的实验应该是输入一个点,通过这个点来预测出整个正弦曲线,但是我尝试了很多次都失败了,只能修改成根据正弦函数的上一个点来预测下一个点

相关推荐
☺����13 分钟前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine25 分钟前
机器学习——数据清洗
人工智能·机器学习
小猿姐1 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生1 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
吱吱企业安全通讯软件2 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
盲盒Q2 小时前
《频率之光:共振之战》
人工智能·硬件架构·量子计算
飞哥数智坊2 小时前
DeepSeek V3.1 发布:我们等的 R2 去哪了?
人工智能·deepseek
爱分享的飘哥2 小时前
第八十三章:实战篇:文 → 图:Prompt 控制图像生成系统构建——从“咒语”到“神作”的炼成!
人工智能·计算机视觉·prompt·文生图·stablediffusion·diffusers·text-to-image
ciku3 小时前
Spring Ai Advisors
人工智能·spring·microsoft
努力还债的学术吗喽3 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论