改进灰狼算法优化随机森林回归预测

灰狼算法(Grey Wolf Optimization,GWO)是一种基于自然界灰狼行为的启发式优化算法,在2014年被提出。该算法模仿了灰狼群体中不同等级的灰狼间的优势竞争和合作行为,通过不断搜索最优解来解决复杂的优化问题。

灰狼算法的核心思想在于其模拟了灰狼的社会等级制度和捕食行为,包括搜索猎物、包围猎物以及攻击猎物三个基本行为。在算法中,灰狼个体的位置代表了解空间中的一个可行解,而群体中占据最好位置的三只灰狼分别对应于狼王及其左右护法,它们带领着狼群向猎物(最优解)前进。

该算法的优点包括较强的收敛性能、结构简单、需要调节的参数少、容易实现,以及能够自适应调整的收敛因子和信息反馈机制,这使得它在局部寻优与全局搜索之间能够实现平衡,因此在求解精度和收敛速度方面都有良好的性能。然而,它也存在一些缺点,如易早熟收敛、面对复杂问题时收敛精度不高以及收敛速度不够快。

关于灰狼算法的存在必要性,它已经在多个领域得到了应用,如航空器进场优化、数学模型等,证明了其在解决复杂优化问题中的有效性。因此,灰狼算法不仅在理论上具有存在的必要性,在实际应用中也有着广泛的应用前景。

但是灰狼优化算法在迭代过程中易陷入局部最优、过早收敛、开采与勘探不平衡性等问题.因此,通过对灰狼算法进行改进力求于提高算法的开采能力和勘探能力。

本文选取三篇文章中针对灰狼算法的改进进行对比,对比效果如下图:

在机械学习中,随机森林是一个包含多个决策树的回归, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 而 "Random Forests" 是他们的商标。 这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造决策树的集合。

随机森林是一种包含很多决策树的分类器,既可以用于处理分类和回归问题,也适用于降维问题。其对异常值与噪音也有很好的容忍,相较于决策树有着更好的预测和分类性能。

将改进的灰狼算法运用于随机森林参数优化中,效果如下:

相关推荐
喵呜嘻嘻嘻9 分钟前
Gurobi求解器参数
java·数据结构·算法
产品经理邹继强44 分钟前
VTC财务与投资篇②:预算革命——如何用三维算法决定每一分钱去哪
算法
Polaris北1 小时前
第二十四天打卡
算法
Anastasiozzzz1 小时前
G1垃圾回收流程详解
java·开发语言·算法
滴滴答滴答答1 小时前
LeetCode Hot100 之 17 有效的括号
算法·leetcode·职场和发展
掘根2 小时前
【C++STL】二叉搜索树(BST)
数据结构·c++·算法
老鼠只爱大米2 小时前
LeetCode经典算法面试题 #20:有效的括号(数组模拟法、递归消除法等五种实现方案详细解析)
算法·leetcode··括号匹配·数组模拟法·递归消除法
yxc_inspire2 小时前
2026年寒假牛客训练赛补题(五)
算法
不想看见4042 小时前
6.3Permutations -- 回溯法--力扣101算法题解笔记
笔记·算法·leetcode
诗词在线2 小时前
孟浩然诗作数字化深度实战:诗词在线的意象挖掘、检索优化与多场景部署
大数据·人工智能·算法