改进灰狼算法优化随机森林回归预测

灰狼算法(Grey Wolf Optimization,GWO)是一种基于自然界灰狼行为的启发式优化算法,在2014年被提出。该算法模仿了灰狼群体中不同等级的灰狼间的优势竞争和合作行为,通过不断搜索最优解来解决复杂的优化问题。

灰狼算法的核心思想在于其模拟了灰狼的社会等级制度和捕食行为,包括搜索猎物、包围猎物以及攻击猎物三个基本行为。在算法中,灰狼个体的位置代表了解空间中的一个可行解,而群体中占据最好位置的三只灰狼分别对应于狼王及其左右护法,它们带领着狼群向猎物(最优解)前进。

该算法的优点包括较强的收敛性能、结构简单、需要调节的参数少、容易实现,以及能够自适应调整的收敛因子和信息反馈机制,这使得它在局部寻优与全局搜索之间能够实现平衡,因此在求解精度和收敛速度方面都有良好的性能。然而,它也存在一些缺点,如易早熟收敛、面对复杂问题时收敛精度不高以及收敛速度不够快。

关于灰狼算法的存在必要性,它已经在多个领域得到了应用,如航空器进场优化、数学模型等,证明了其在解决复杂优化问题中的有效性。因此,灰狼算法不仅在理论上具有存在的必要性,在实际应用中也有着广泛的应用前景。

但是灰狼优化算法在迭代过程中易陷入局部最优、过早收敛、开采与勘探不平衡性等问题.因此,通过对灰狼算法进行改进力求于提高算法的开采能力和勘探能力。

本文选取三篇文章中针对灰狼算法的改进进行对比,对比效果如下图:

在机械学习中,随机森林是一个包含多个决策树的回归, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 而 "Random Forests" 是他们的商标。 这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造决策树的集合。

随机森林是一种包含很多决策树的分类器,既可以用于处理分类和回归问题,也适用于降维问题。其对异常值与噪音也有很好的容忍,相较于决策树有着更好的预测和分类性能。

将改进的灰狼算法运用于随机森林参数优化中,效果如下:

相关推荐
weixin_477271691 小时前
马王堆帛书《周易》六十四貞如何读象(《函谷门》原创)
算法·图搜索算法
追随者永远是胜利者9 小时前
(LeetCode-Hot100)53. 最大子数组和
java·算法·leetcode·职场和发展·go
生成论实验室9 小时前
即事经:一种基于生成论的宇宙、生命与文明新范式
人工智能·科技·神经网络·算法·信息与通信
王老师青少年编程9 小时前
csp信奥赛c++高频考点假期集训(分模块进阶)
数据结构·c++·算法·csp·高频考点·信奥赛·集训
癫狂的兔子11 小时前
【Python】【机器学习】K-MEANS算法
算法·机器学习·kmeans
Bear on Toilet11 小时前
递归_二叉树_50 . 从前序与中序遍历序列构造二叉树
数据结构·算法·leetcode·深度优先·递归
plus4s11 小时前
2月18日(82-84题)
c++·算法·动态规划
艾醒12 小时前
打破信息差——2026年2月19日AI热点新闻速览
算法
追随者永远是胜利者14 小时前
(LeetCode-Hot100)62. 不同路径
java·算法·leetcode·职场和发展·go
追随者永远是胜利者14 小时前
(LeetCode-Hot100)56. 合并区间
java·算法·leetcode·职场和发展·go