机器学习理解梯度

一、在机器学习领域,模型的参数是指在训练过程中需要学习的变量,例如神经网络中的权重和偏置。这些参数的调整是通过优化算法来实现的,而梯度是这个优化过程中的关键概念之一。

二、模型参数之间的差异通常不直接称为梯度,而是用来计算梯度的一部分。

三、梯度是指损失函数对于模型参数的偏导数,表示了损失函数在参数空间中的变化率。换句话说,它告诉我们如果稍微调整参数,损失函数会如何变化。这对于优化算法来说至关重要,因为它指示了参数更新的方向和大小,从而使模型在训练数据上表现更好。

四、在训练过程中,通常使用链式法则来计算损失函数对于每个模型参数的偏导数,也就是梯度。这个过程包括两个步骤:前向传播和反向传播。

(1)前向传播是指使用当前模型参数进行前向计算,得到模型的输出结果。

(2)反向传播则是根据前向传播的结果,计算损失函数对于模型参数的偏导数,即梯度。

在这个过程中,模型参数之间的差异起到了关键作用。这些差异直接影响着梯度的计算,因为梯度是通过对参数进行微小的调整来计算得到的。

(3)通过计算损失函数在当前参数值处的梯度,我们可以确定参数更新的方向和大小,从而优化模型,使其在训练数据上表现更好。这就是梯度在机器学习中的重要性和应用。

相关推荐
Lian_Ge_Blog7 分钟前
微调方法学习总结(万字长文!)
人工智能·深度学习
EEPI23 分钟前
【论文阅读】VGGT: Visual Geometry Grounded Transformer
论文阅读·深度学习·transformer
水月wwww26 分钟前
【深度学习】循环神经网络实现文本预测生成
人工智能·rnn·深度学习·gru·lstm·循环神经网络·文本续写
ASD123asfadxv28 分钟前
齿轮端面缺陷检测与分类_DINO-4Scale实现与训练_1
人工智能·分类·数据挖掘
汗流浃背了吧,老弟!1 小时前
SFT(监督式微调)
人工智能
zl_vslam1 小时前
SLAM中的非线性优-3D图优化之相对位姿Between Factor位姿图优化(十三)
人工智能·算法·计算机视觉·3d
Xy-unu1 小时前
Analog optical computer for AI inference and combinatorial optimization
论文阅读·人工智能
小马过河R1 小时前
混元世界模型1.5架构原理初探
人工智能·语言模型·架构·nlp
三万棵雪松1 小时前
【AI小智后端部分(一)】
人工智能·python·ai小智