94、动态规划-最长公共子序列

  1. 递归的基本思路
    • 比较两个字符串的最后一个字符。如果相同,则这个字符一定属于最长公共子序列,然后在剩余的字符串上递归求解。
    • 如果最后一个字符不相同,则分两种情况递归求解:
      • 去掉 text1 的最后一个字符,保留 text2 的所有字符。
      • 去掉 text2 的最后一个字符,保留 text1 的所有字符。
    • 取两种情况的最大值作为最终结果。
  2. 递归的终止条件
    • 如果任一字符串为空,则公共子序列长度为0。

代码如下:

java 复制代码
public class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        return lcs(text1, text2, text1.length(), text2.length());
    }

    private int lcs(String text1, String text2, int i, int j) {
        // 终止条件:任一字符串长度为0
        if (i == 0 || j == 0) {
            return 0;
        }

        // 递归计算
        if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
            // 最后一个字符相同,是LCS的一部分
            return 1 + lcs(text1, text2, i - 1, j - 1);
        } else {
            // 最后一个字符不同,选择不包含text1[i-1]或text2[j-1]的最大LCS
            return Math.max(lcs(text1, text2, i - 1, j), lcs(text1, text2, i, j - 1));
        }
    }
}

动态规划是优化递归的方法,使用表格来存储中间结果,避免重复计算。

  1. 定义状态

    • dp[i][j] 表示 text1[0...i-1]text2[0...j-1] 的最长公共子序列的长度。
  2. 状态转移方程

    • 如果 text1[i-1] == text2[j-1],则 dp[i][j] = dp[i-1][j-1] + 1
    • 如果 text1[i-1] != text2[j-1],则 dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  3. 初始化

    • 初始化 dp 数组,当 ij 为0时,dp[i][j] = 0,表示一个字符串为空。
  4. 填表顺序

    • 由于每个 dp[i][j] 依赖于左边、上边和左上角的值,因此应从上到下、从左到右填表。
  5. 返回结果

    • dp[text1.length()][text2.length()] 即为两个字符串的最长公共子序列的长度。

代码如下:

java 复制代码
public int longestCommonSubsequence(String text1, String text2) {
        // 获取输入字符串的长度
        int m = text1.length(), n = text2.length();
        
        // 创建动态规划表,多出的一行一列用于处理边界情况,即某一字符串长度为0的情况
        int[][] dp = new int[m + 1][n + 1];
        
        // 填充动态规划表
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 检查当前位置的字符是否相同
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    // 如果当前两个字符相同,那么这两个字符属于LCS的一部分
                    // 因此dp[i][j]等于左上角的值加1
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 如果当前两个字符不相同,则LCS长度取决于不包含当前字符的子问题的最大值
                    // 即从左边或上边继承最大值
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        
        // 返回最终结果,即整个字符串的最长公共子序列长度
        return dp[m][n];
    }
相关推荐
iAkuya3 分钟前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼3 分钟前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck5 分钟前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆8 分钟前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
java干货19 分钟前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
皮皮哎哟26 分钟前
数据结构:嵌入式常用排序与查找算法精讲
数据结构·算法·排序算法·二分查找·快速排序
程序员清洒35 分钟前
CANN模型剪枝:从敏感度感知到硬件稀疏加速的全链路压缩实战
算法·机器学习·剪枝
vortex51 小时前
几种 dump hash 方式对比分析
算法·哈希算法
Wei&Yan2 小时前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
团子的二进制世界2 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法