94、动态规划-最长公共子序列

  1. 递归的基本思路
    • 比较两个字符串的最后一个字符。如果相同,则这个字符一定属于最长公共子序列,然后在剩余的字符串上递归求解。
    • 如果最后一个字符不相同,则分两种情况递归求解:
      • 去掉 text1 的最后一个字符,保留 text2 的所有字符。
      • 去掉 text2 的最后一个字符,保留 text1 的所有字符。
    • 取两种情况的最大值作为最终结果。
  2. 递归的终止条件
    • 如果任一字符串为空,则公共子序列长度为0。

代码如下:

java 复制代码
public class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        return lcs(text1, text2, text1.length(), text2.length());
    }

    private int lcs(String text1, String text2, int i, int j) {
        // 终止条件:任一字符串长度为0
        if (i == 0 || j == 0) {
            return 0;
        }

        // 递归计算
        if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
            // 最后一个字符相同,是LCS的一部分
            return 1 + lcs(text1, text2, i - 1, j - 1);
        } else {
            // 最后一个字符不同,选择不包含text1[i-1]或text2[j-1]的最大LCS
            return Math.max(lcs(text1, text2, i - 1, j), lcs(text1, text2, i, j - 1));
        }
    }
}

动态规划是优化递归的方法,使用表格来存储中间结果,避免重复计算。

  1. 定义状态

    • dp[i][j] 表示 text1[0...i-1]text2[0...j-1] 的最长公共子序列的长度。
  2. 状态转移方程

    • 如果 text1[i-1] == text2[j-1],则 dp[i][j] = dp[i-1][j-1] + 1
    • 如果 text1[i-1] != text2[j-1],则 dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  3. 初始化

    • 初始化 dp 数组,当 ij 为0时,dp[i][j] = 0,表示一个字符串为空。
  4. 填表顺序

    • 由于每个 dp[i][j] 依赖于左边、上边和左上角的值,因此应从上到下、从左到右填表。
  5. 返回结果

    • dp[text1.length()][text2.length()] 即为两个字符串的最长公共子序列的长度。

代码如下:

java 复制代码
public int longestCommonSubsequence(String text1, String text2) {
        // 获取输入字符串的长度
        int m = text1.length(), n = text2.length();
        
        // 创建动态规划表,多出的一行一列用于处理边界情况,即某一字符串长度为0的情况
        int[][] dp = new int[m + 1][n + 1];
        
        // 填充动态规划表
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 检查当前位置的字符是否相同
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    // 如果当前两个字符相同,那么这两个字符属于LCS的一部分
                    // 因此dp[i][j]等于左上角的值加1
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 如果当前两个字符不相同,则LCS长度取决于不包含当前字符的子问题的最大值
                    // 即从左边或上边继承最大值
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        
        // 返回最终结果,即整个字符串的最长公共子序列长度
        return dp[m][n];
    }
相关推荐
一只码代码的章鱼8 分钟前
高精度算法:加减乘除 (学习笔记)
算法
go546315846516 分钟前
磁盘调度算法
服务器·数据库·算法
monkiro26 分钟前
机器学习算法基础知识1:决策树
算法·决策树·机器学习
volcanical43 分钟前
线性回归与逻辑回归
算法·逻辑回归·线性回归
yonuyeung1 小时前
代码随想录算法【Day4】
算法
云边有个稻草人1 小时前
AIGC与虚拟身份及元宇宙的未来:虚拟人物创作与智能交互
笔记·算法·aigc
minstbe1 小时前
AI开发 - 算法基础 递归 的概念和入门(二)汉诺塔问题 递归的应用和使用注意 - Python
开发语言·python·算法
TANGLONG2222 小时前
【初阶数据结构与算法】八大排序之非递归系列( 快排(使用栈或队列实现)、归并排序)
java·c语言·数据结构·c++·算法·蓝桥杯·排序算法
不想当程序猿_2 小时前
【蓝桥杯每日一题】与或异或——DFS
c++·算法·蓝桥杯·深度优先
就爱学编程2 小时前
力扣刷题:单链表OJ篇(下)
算法·leetcode·职场和发展