笔记1--Llama 3 超级课堂 | Llama3概述与演进历程

1、Llama 3概述

https://github.com/SmartFlowAI/Llama3-Tutorial.git
【Llama 3 五一超级课堂 | Llama3概述与演进历程】





























2、Llama 3 改进点

【最新【大模型微调】大模型llama3技术全面解析 大模型应用部署 据说llama3不满足scaling law?】 https://www.bilibili.com/video/BV1kM4m1f7iM/?share_source=copy_web\&vd_source=dda2d2fa9c7a85f3fb74cf7ccca3de22

GQA

编码词表

数据合成

模型最优化

160B和15T

DPO


与 RLHF 首先训练奖励模型进行策略优化不同,DPO 直接将偏好信息添加到优化过程中,而无需训练奖励模型的中间步骤。

DPO 使用 LLM 作为奖励模型,并采用二元交叉熵目标来优化策略,利用人类偏好数据来识别哪些响应是首选的,哪些不是。该政策根据首选反应进行调整,以提高其绩效。

DPO 与 RLHF 相比具有以下诸多优点:

  • 简单且易于实施

    与RLHF 涉及收集详细反馈、优化复杂策略和奖励模型训练的多层过程不同,DPO 直接将人类偏好集成到训练循环中。这种方法不仅消除了与过程相关的复杂性,而且更好地与预训练和微调的标准系统保持一致。此外,DPO 不涉及构建和调整奖励函数的复杂性。

  • 无需奖励模型训练

    DPO 无需训练额外的奖励模型,从而节省了计算资源并消除了与奖励模型准确性和维护相关的挑战。开发一个有效的奖励模型,将人类反馈解释为人工智能可操作的信号是一项复杂的任务。它需要大量的努力并且需要定期更新才能准确地反映不断变化的人类偏好。 DPO 通过直接利用偏好数据来改进模型,从而完全绕过此步骤。

参考资料:

https://www.cnblogs.com/lemonzhang/p/17910358.html

总结

相关推荐
神齐的小马18 分钟前
机器学习 [白板推导](六)[核方法、指数族分布]
人工智能·机器学习
汇能感知23 分钟前
光谱相机叶绿素荧光成像技术的原理
经验分享·笔记·科技
孚为智能科技25 分钟前
集装箱残损识别系统如何检测残损?它的识别率能达到多少?
大数据·图像处理·人工智能·计算机视觉·视觉检测
饭碗、碗碗香27 分钟前
【开发常用命令】:docker常用命令
linux·运维·笔记·学习·docker·容器
小白学大数据42 分钟前
爬取汽车之家评论并利用NLP进行关键词提取
人工智能·自然语言处理·汽车
biubiubiu07061 小时前
AI中的Prompt
人工智能·prompt
AIGC_ZY1 小时前
RAG 技术详解:结合检索与生成的智能问答新范式
人工智能
1 小时前
前端工程师必备:5个改变开发效率的 MCP Server
人工智能
Ai尚研修-贾莲1 小时前
最新Transformer模型及深度学习前沿技术应用
人工智能·深度学习·transformer·生成式模型·图神经网络·注意力机制·目标检测算法
weixin_453253652 小时前
机器学习----模型评价与优化
人工智能·机器学习