分析
很明显:单源最短路径 + 没有负权边 = dijkstra
1.存图
2.准备两个数组
dis[]:更新源点到各个点的距离
vis[]:标记是否访问
3.从源点开始,更新源点到与其邻接的点的距离,每次选出dis[]min且未访问的点进行重复上述步骤
代码
两种实现方法:
1.链式前向星存图 + prioroty_queue
注意:优先队列默认大根堆,故要重载 < ;且优先队列按优先级排序,对于 < 而言,a < b为true的意思是,右边的优先级大于左边,故应为return a > b;
cpp
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
const int N = 1010,M = 10010;
struct Node{
int u,dis;
//重载 <(优先队列默认大根堆)
bool operator < (const Node &x)const
{
return dis > x.dis;
}
};
//链式前向星
struct edges{
int to;
int ne;
int w;
}e[M*2];
int head[N],cnt = 1,n,m,c[N];
ll dis[N];
bool vis[N];
priority_queue<Node> q;
//初始化
void init()
{
memset(head,-1,sizeof head);
memset(dis,0x3f,sizeof dis);
}
//加边
void add(int u,int v,int w)
{
e[cnt].to = v;
e[cnt].ne = head[u];
e[cnt].w = w;
head[u] = cnt ++;
}
//dijkstra模板
void dijkstra(int x)
{
dis[x] = 0;
q.push((Node){x,0});
while(!q.empty())
{
Node t = q.top();
q.pop();
int u = t.u;
if(vis[u]) continue;
vis[u] = 1;
for(int i = head[u];i != -1;i = e[i].ne) //遍历邻接点
{
int v = e[i].to;
int w = e[i].w;
if(dis[v] > dis[u] + w) //更新dis[]
{
dis[v] = dis[u] + w;
if(!vis[v]) q.push((Node){v,dis[v]}); //未被访问,压入队列
}
}
}
}
int main()
{
init();
scanf("%d %d",&n,&m);
for(int i = 1;i <= n;i ++) scanf("%d",&c[i]);
for(int i = 1;i <= m;i ++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
add(u,v,w + c[v]); //把隔离时间当边权值
add(v,u,w + c[u]);
}
dijkstra(1);
printf("%lld",dis[n] - c[n]); //减去最后一个城市的隔离时间
return 0;
}
2.邻接矩阵存图 + 一重循环(高举y总大旗!超简洁!)
cpp
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 1010;
int g[N][N],n,m,c[N];
ll dis[N];
bool vis[N];
void dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[1] = 0;
//重复分析中的第三步n-1次即可
for(int i = 1;i < n;i ++)
{
//找到dis[]中的min且未被访问
int t = 0; //初始化dis[]为0x3f,t = 0时,dis[t] = max
for(int j = 1;j <= n;j ++)
{
if(!vis[j] && dis[t] > dis[j]) t = j;
}
//找到t,用t更新dis[]
for(int j = 1;j <= n;j ++)
{
if(dis[j] > dis[t] + g[t][j])
dis[j] = dis[t] + g[t][j];
}
vis[t] = true; //记得标记一下已访问
}
return ;
}
int main()
{
memset(g,0x3f,sizeof g); //初始化g[][]
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;i ++) scanf("%d",&c[i]);
for(int i = 1;i <= m;i ++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
g[x][y] = z + c[y];
g[y][x] = z + c[x]; //存双向边 + c[x]
}
dijkstra();
printf("%lld",dis[n] - c[n]);
return 0;
}