矩阵相关运算1

矩阵运算是线性代数中的一个核心部分,它包含了许多不同类型的操作,可以应用于各种科学和工程问题中。

矩阵加法和减法

矩阵加法和减法需要两个矩阵具有相同的维度。操作是逐元素进行的:

cpp 复制代码
C=A+B or C=A−B

其中 A,B 和 C 是矩阵,且 Cij=Aij+Bij(或减法相应地)。

假设有两个矩阵 A 和 B:

cpp 复制代码
A=[1   2
   3   4]
B=[5   6
   7   8]

加法运算 A+B的结果是:

cpp 复制代码
A+B=[1+5   2+6
     3+7  4+8]
   =[6      8
     10    12]

矩阵乘法

矩阵乘法涉及两个矩阵,其中第一个矩阵的列数必须与第二个矩阵的行数相等。如果 A是一个 m×n 矩阵,B 是一个 n×p矩阵,则它们的乘积 C 将是一个 m×p 矩阵,其中:
若 A 和 B 如下:

cpp 复制代码
A=[1   2
   3   4]
B=[2  0 
   1  2]

乘法运算 AB 的结果是:

cpp 复制代码
AB=[1∗2+2∗1     1∗0+2∗2  
    3∗2+4∗1     3∗0+4∗2]
  =[4   4
    10  8]

矩阵的逆

一个方阵的逆存在于当且仅当其行列式不为零时。如果 A 是一个 n×n 矩阵,那么它的逆 A−1 满足:

AA−1=I

A−1A=I

对于矩阵 A:

cpp 复制代码
A=[1   2
   3   4]

若存在,A 的逆 A−1是:

转置

一个矩阵的转置是将其行与列互换得到的矩阵。如果 AA是一个 m×n 矩阵,则其转置 AT 是一个 n×m矩阵。

行列式的值

代码(python)

python 复制代码
import numpy as np

# 创建矩阵 A 和 B
A = np.array([[1, 2], [3, 4]])
B = np.array([[2, 0], [1, 2]])

# 矩阵加法
C = A + B

# 矩阵乘法
D = np.dot(A, B)

# 矩阵的逆
E = np.linalg.inv(A)

# 矩阵的行列式
detA = np.linalg.det(A)

# 矩阵的转置
F = A.T

print("加法结果:", C)
print("乘法结果:", D)
print("逆矩阵:", E)
print("行列式:", detA)
print("转置矩阵:", F)
相关推荐
databook12 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar13 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户83562907805113 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_13 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机20 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机21 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机21 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机21 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i21 小时前
drf初步梳理
python·django
每日AI新事件21 小时前
python的异步函数
python