数据收集-分化轨迹推断

数据收集-分化轨迹推断

1

参考

Ranek, J.S., Stanley, N. & Purvis, J.E. Integrating temporal single-cell gene expression modalities for trajectory inference and disease prediction. Genome Biol 23, 186 (2022). https://doi.org/10.1186/s13059-022-02749-0

内容

The raw publicly available single-cell RNA sequencing datasets downloaded and used in this study are available in the

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) repository, under the accession codes GSE81682

for hematopoiesis diferentiation (Nestorowa) [86]; GSE74596 for NKT cell diferentiation [87]; GSE70236, GSE70240,

and GSE70244 for hematopoiesis diferentiation (Olsson) [88]; GSE94383 for LPS stimulation [89]; GSE161465 for INFγ
stimulation
[90]; GSE116481 for AML chemotherapy [91]; GSE126068 for AML diagnosis/relapse [92]; and GSE138266 for MS case/control PBMC and CSF datasets [93] and in the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/arrayexpress/experiments/) repository, under accession numbers E-MTAB-2805 for mouse embryonic cell cycle [94] datasets, respectively. Loom fles and preprocessed data are available in the Zenodo repository https://doi.org/10.5281/zenodo.6587903 [95]. Source code including all functions for preprocessing, integration, and evaluation are publicly available at www.github.com/jranek/EVI [96] and in the Zenodo repository [97].

2

参考

Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547--554 (2019). https://doi.org/10.1038/s41587-019-0071-9

内容

The scripts to download and process these datasets are available on our repository (https://benchmark.dynverse.org/tree/master/scripts/01-datasets).

3

参考

Wolf, F. & Hamey, Fiona & Plass, Mireya & Solana, Jordi & Dahlin, Joakim & Rajewsky, Nikolaus & Simon, Lukas & Theis, Fabian. (2019). PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology. 20. 10.1186/s13059-019-1663-x.

内容


4

参考

Zeng, Y., He, J., Bai, Z. et al. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29, 881--894 (2019). https://doi.org/10.1038/s41422-019-0228-6

内容

The scRNA-seq data reported in this study have been deposited in NCBI's Gene Expression Omnibus (GEO) with the accession number GSE135202. All other relevant data in this study are available from the corresponding authors upon reasonable request.

5

参考

Junjie Du, Han He, Zongcheng Li, Jian He, Zhijie Bai, Bing Liu, Yu Lan,

Integrative transcriptomic analysis of developing hematopoietic stem cells in human and mouse at single-cell resolution,

Biochemical and Biophysical Research Communications,Volume 558,2021,Pages 161-167,ISSN 0006-291X,

内容

2.1.1. Mouse

Zhou et al. performed single-cell transcriptome sequencing on cells during the development of HSCs [3]. Expression matrix of cell populations (type 1 and 2 pre-HSCs, E12/E14 HSCs and adult HSCs, abbreviated as mT1 and mT2 pre-HSCs, mE12/mE14 HSCs and mAdult HSC respectively) was downloaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67120).

Hou et al. constructed high-precision single-cell transcriptomics to unbiasedly examine the endothelial cells populations at continuous developmental stages with intervals of 0.5 days from embryonic day (E) 9.5 to E11.0 [4]. Expression matrix of cell populations (HECs, type 1 pre-HSCs, abbreviated as mHECs and mT1 pre-HSCs respectively) was downloaded from: https://github.com/Liu-Lan-lab/Project_mHEC_CR2020.

2.1.2. Human

Zeng et al. analyzed the cell populations of the dorsal aorta during the temporal window of human embryonic HSC generation using single-cell transcriptome sequencing [6]. Expression matrix of cell populations (HECs, three subsets of HSPCs, abbreviated as hHECs and hHSPC_GJA5+/Cycling/GFI1B+, respectively) was downloaded from: https://github.com/Liu-Lan-lab/Project_hHEC_HSPC_CR2019.

Bian et al. applied scRNA-seq on CD45+ hematopoietic cell populations from a range of tissues in human embryos, and transcriptomically identified HSPCs with high expression of such as CD34, MYB, and HOX family transcription factors HOXA6 and HOXA10 in liver at CS20 and CS23 [9]. Expression matrix of HSPCs in human fetal liver (abbreviated as hHSPC_FL) was downloaded from: https://github.com/Liu-Lan-lab/human_macrophage_project_data

6:methods and datasets review

参考

Shen, Sophie et al. "Integrating single-cell genomics pipelines to discover mechanisms of stem cell differentiation." Trends in molecular medicine vol. 27,12 (2021): 1135-1158. doi:10.1016/j.molmed.2021.09.006

内容

相关推荐
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
蓝婷儿9 天前
Python 数据分析与可视化 Day 2 - 数据清洗基础
开发语言·python·数据分析
蓝婷儿10 天前
Python 数据分析与可视化 Day 5 - 数据可视化入门(Matplotlib & Seaborn)
python·信息可视化·数据分析
大数据CLUB10 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
不秃的卤蛋10 天前
回归任务与分类任务的区别
人工智能·分类·数据挖掘·回归
深空数字孪生10 天前
金融行业B端系统布局实战:风险管控与数据可视化的定制方案
信息可视化·金融·数据分析
电商API_1800790524710 天前
实现自动胡批量抓取唯品会商品详情数据的途径分享(官方API、网页爬虫)
java·前端·爬虫·数据挖掘·网络爬虫
大千AI助手10 天前
决策树:化繁为简的智能决策利器
人工智能·算法·决策树·机器学习·数据挖掘·tree·decisiontree
小葛呀10 天前
在大数据求职面试中如何回答分布式协调与数据挖掘问题
大数据·分布式·机器学习·面试·数据挖掘·互联网·技术栈