数据收集-分化轨迹推断

数据收集-分化轨迹推断

1

参考

Ranek, J.S., Stanley, N. & Purvis, J.E. Integrating temporal single-cell gene expression modalities for trajectory inference and disease prediction. Genome Biol 23, 186 (2022). https://doi.org/10.1186/s13059-022-02749-0

内容

The raw publicly available single-cell RNA sequencing datasets downloaded and used in this study are available in the

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) repository, under the accession codes GSE81682

for hematopoiesis diferentiation (Nestorowa) [86]; GSE74596 for NKT cell diferentiation [87]; GSE70236, GSE70240,

and GSE70244 for hematopoiesis diferentiation (Olsson) [88]; GSE94383 for LPS stimulation [89]; GSE161465 for INFγ
stimulation
[90]; GSE116481 for AML chemotherapy [91]; GSE126068 for AML diagnosis/relapse [92]; and GSE138266 for MS case/control PBMC and CSF datasets [93] and in the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/arrayexpress/experiments/) repository, under accession numbers E-MTAB-2805 for mouse embryonic cell cycle [94] datasets, respectively. Loom fles and preprocessed data are available in the Zenodo repository https://doi.org/10.5281/zenodo.6587903 [95]. Source code including all functions for preprocessing, integration, and evaluation are publicly available at www.github.com/jranek/EVI [96] and in the Zenodo repository [97].

2

参考

Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547--554 (2019). https://doi.org/10.1038/s41587-019-0071-9

内容

The scripts to download and process these datasets are available on our repository (https://benchmark.dynverse.org/tree/master/scripts/01-datasets).

3

参考

Wolf, F. & Hamey, Fiona & Plass, Mireya & Solana, Jordi & Dahlin, Joakim & Rajewsky, Nikolaus & Simon, Lukas & Theis, Fabian. (2019). PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology. 20. 10.1186/s13059-019-1663-x.

内容


4

参考

Zeng, Y., He, J., Bai, Z. et al. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29, 881--894 (2019). https://doi.org/10.1038/s41422-019-0228-6

内容

The scRNA-seq data reported in this study have been deposited in NCBI's Gene Expression Omnibus (GEO) with the accession number GSE135202. All other relevant data in this study are available from the corresponding authors upon reasonable request.

5

参考

Junjie Du, Han He, Zongcheng Li, Jian He, Zhijie Bai, Bing Liu, Yu Lan,

Integrative transcriptomic analysis of developing hematopoietic stem cells in human and mouse at single-cell resolution,

Biochemical and Biophysical Research Communications,Volume 558,2021,Pages 161-167,ISSN 0006-291X,

内容

2.1.1. Mouse

Zhou et al. performed single-cell transcriptome sequencing on cells during the development of HSCs [3]. Expression matrix of cell populations (type 1 and 2 pre-HSCs, E12/E14 HSCs and adult HSCs, abbreviated as mT1 and mT2 pre-HSCs, mE12/mE14 HSCs and mAdult HSC respectively) was downloaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67120).

Hou et al. constructed high-precision single-cell transcriptomics to unbiasedly examine the endothelial cells populations at continuous developmental stages with intervals of 0.5 days from embryonic day (E) 9.5 to E11.0 [4]. Expression matrix of cell populations (HECs, type 1 pre-HSCs, abbreviated as mHECs and mT1 pre-HSCs respectively) was downloaded from: https://github.com/Liu-Lan-lab/Project_mHEC_CR2020.

2.1.2. Human

Zeng et al. analyzed the cell populations of the dorsal aorta during the temporal window of human embryonic HSC generation using single-cell transcriptome sequencing [6]. Expression matrix of cell populations (HECs, three subsets of HSPCs, abbreviated as hHECs and hHSPC_GJA5+/Cycling/GFI1B+, respectively) was downloaded from: https://github.com/Liu-Lan-lab/Project_hHEC_HSPC_CR2019.

Bian et al. applied scRNA-seq on CD45+ hematopoietic cell populations from a range of tissues in human embryos, and transcriptomically identified HSPCs with high expression of such as CD34, MYB, and HOX family transcription factors HOXA6 and HOXA10 in liver at CS20 and CS23 [9]. Expression matrix of HSPCs in human fetal liver (abbreviated as hHSPC_FL) was downloaded from: https://github.com/Liu-Lan-lab/human_macrophage_project_data

6:methods and datasets review

参考

Shen, Sophie et al. "Integrating single-cell genomics pipelines to discover mechanisms of stem cell differentiation." Trends in molecular medicine vol. 27,12 (2021): 1135-1158. doi:10.1016/j.molmed.2021.09.006

内容

相关推荐
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
sp_fyf_20243 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
陈燚_重生之又为程序员3 小时前
基于梧桐数据库的实时数据分析解决方案
数据库·数据挖掘·数据分析
几两春秋梦_7 小时前
符号回归概念
人工智能·数据挖掘·回归
艾派森10 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
武子康14 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
Q81375746014 小时前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
布说在见14 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Tianyanxiao15 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
FIT2CLOUD飞致云16 小时前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一