数据收集-分化轨迹推断

数据收集-分化轨迹推断

1

参考

Ranek, J.S., Stanley, N. & Purvis, J.E. Integrating temporal single-cell gene expression modalities for trajectory inference and disease prediction. Genome Biol 23, 186 (2022). https://doi.org/10.1186/s13059-022-02749-0

内容

The raw publicly available single-cell RNA sequencing datasets downloaded and used in this study are available in the

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) repository, under the accession codes GSE81682

for hematopoiesis diferentiation (Nestorowa) [86]; GSE74596 for NKT cell diferentiation [87]; GSE70236, GSE70240,

and GSE70244 for hematopoiesis diferentiation (Olsson) [88]; GSE94383 for LPS stimulation [89]; GSE161465 for INFγ
stimulation
[90]; GSE116481 for AML chemotherapy [91]; GSE126068 for AML diagnosis/relapse [92]; and GSE138266 for MS case/control PBMC and CSF datasets [93] and in the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/arrayexpress/experiments/) repository, under accession numbers E-MTAB-2805 for mouse embryonic cell cycle [94] datasets, respectively. Loom fles and preprocessed data are available in the Zenodo repository https://doi.org/10.5281/zenodo.6587903 [95]. Source code including all functions for preprocessing, integration, and evaluation are publicly available at www.github.com/jranek/EVI [96] and in the Zenodo repository [97].

2

参考

Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547--554 (2019). https://doi.org/10.1038/s41587-019-0071-9

内容

The scripts to download and process these datasets are available on our repository (https://benchmark.dynverse.org/tree/master/scripts/01-datasets).

3

参考

Wolf, F. & Hamey, Fiona & Plass, Mireya & Solana, Jordi & Dahlin, Joakim & Rajewsky, Nikolaus & Simon, Lukas & Theis, Fabian. (2019). PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology. 20. 10.1186/s13059-019-1663-x.

内容


4

参考

Zeng, Y., He, J., Bai, Z. et al. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29, 881--894 (2019). https://doi.org/10.1038/s41422-019-0228-6

内容

The scRNA-seq data reported in this study have been deposited in NCBI's Gene Expression Omnibus (GEO) with the accession number GSE135202. All other relevant data in this study are available from the corresponding authors upon reasonable request.

5

参考

Junjie Du, Han He, Zongcheng Li, Jian He, Zhijie Bai, Bing Liu, Yu Lan,

Integrative transcriptomic analysis of developing hematopoietic stem cells in human and mouse at single-cell resolution,

Biochemical and Biophysical Research Communications,Volume 558,2021,Pages 161-167,ISSN 0006-291X,

内容

2.1.1. Mouse

Zhou et al. performed single-cell transcriptome sequencing on cells during the development of HSCs [3]. Expression matrix of cell populations (type 1 and 2 pre-HSCs, E12/E14 HSCs and adult HSCs, abbreviated as mT1 and mT2 pre-HSCs, mE12/mE14 HSCs and mAdult HSC respectively) was downloaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67120).

Hou et al. constructed high-precision single-cell transcriptomics to unbiasedly examine the endothelial cells populations at continuous developmental stages with intervals of 0.5 days from embryonic day (E) 9.5 to E11.0 [4]. Expression matrix of cell populations (HECs, type 1 pre-HSCs, abbreviated as mHECs and mT1 pre-HSCs respectively) was downloaded from: https://github.com/Liu-Lan-lab/Project_mHEC_CR2020.

2.1.2. Human

Zeng et al. analyzed the cell populations of the dorsal aorta during the temporal window of human embryonic HSC generation using single-cell transcriptome sequencing [6]. Expression matrix of cell populations (HECs, three subsets of HSPCs, abbreviated as hHECs and hHSPC_GJA5+/Cycling/GFI1B+, respectively) was downloaded from: https://github.com/Liu-Lan-lab/Project_hHEC_HSPC_CR2019.

Bian et al. applied scRNA-seq on CD45+ hematopoietic cell populations from a range of tissues in human embryos, and transcriptomically identified HSPCs with high expression of such as CD34, MYB, and HOX family transcription factors HOXA6 and HOXA10 in liver at CS20 and CS23 [9]. Expression matrix of HSPCs in human fetal liver (abbreviated as hHSPC_FL) was downloaded from: https://github.com/Liu-Lan-lab/human_macrophage_project_data

6:methods and datasets review

参考

Shen, Sophie et al. "Integrating single-cell genomics pipelines to discover mechanisms of stem cell differentiation." Trends in molecular medicine vol. 27,12 (2021): 1135-1158. doi:10.1016/j.molmed.2021.09.006

内容

相关推荐
浣熊-论文指导9 小时前
聚类与Transformer融合的六大创新方向
论文阅读·深度学习·机器学习·transformer·聚类
SeaTunnel12 小时前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据仓库·数据分析·数据同步
B站_计算机毕业设计之家13 小时前
预测算法:股票数据分析预测系统 股票预测 股价预测 Arima预测算法(时间序列预测算法) Flask 框架 大数据(源码)✅
python·算法·机器学习·数据分析·flask·股票·预测
qq_4369621816 小时前
奥威BI:AI数据分析赋能企业智能决策
人工智能·数据挖掘·数据分析
兮兮能吃能睡20 小时前
数据分析核心术语略解
数据挖掘·数据分析
Chef_Chen1 天前
数据科学每日总结--Day4--数据挖掘
人工智能·数据挖掘
渡我白衣1 天前
AI 应用层革命(一)——软件的终结与智能体的崛起
人工智能·opencv·机器学习·语言模型·数据挖掘·人机交互·集成学习
青云交1 天前
Java 大视界 -- Java 大数据在智能建筑能耗监测与节能策略制定中的应用
数据分析·数据存储·数据可视化·1024程序员节·能耗监测·java 大数据·智能建筑
刘孬孬沉迷学习1 天前
AI+通信+多模态应用分类与核心内容总结
人工智能·机器学习·分类·数据挖掘·信息与通信
周杰伦_Jay1 天前
【Mac下通过Brew安装Ollama 】部署 DeepSeek 轻量模型(实测版)
人工智能·macos·数据挖掘·database·1024程序员节