机器学习——6.模型训练案例: 预测儿童神经缺陷分类TD/ADHD

案例目的

有一份EXCEL标注数据,如下,训练出合适的模型来预测儿童神经缺陷分类。

参考文章:机器学习------5.案例: 乳腺癌预测-CSDN博客

代码逻辑步骤

  1. 读取数据
  2. 训练集与测试集拆分
  3. 数据标准化
  4. 数据转化为Pytorch张量
  5. label维度转换
  6. 定义模型
  7. 定义损失计算函数
  8. 定义优化器
  9. 定义梯度下降函数
  10. 模型训练(正向传播、计算损失、反向传播、梯度清空)
  11. 模型测试
  12. 精度计算

代码实现

python 复制代码
import numpy as np
import pandas as pd
import torch
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


df = pd.read_excel('/Users/guojun/Desktop/Learning/machine_learning/Preprocess_Without_WDE_Channels_Data.xlsx')

X = df[df.columns[0:8]].values
mapping = {"TD":0,"ADHD":1}
Y = df["Class"].replace(mapping)

# 数据集拆分
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=5)
Y_train = Y_train.to_numpy()
Y_test = Y_test.to_numpy()

# 数据标准化
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)


# 转化为张量
X_train = torch.from_numpy(X_train.astype(np.float32))
X_test = torch.from_numpy(X_test.astype(np.float32))
Y_train = torch.from_numpy(Y_train.astype(np.float32))
Y_test = torch.from_numpy(Y_test.astype(np.float32))

# 真值转为为二维数据
Y_train = Y_train.view(Y_train.shape[0],-1)
Y_test = Y_test.view(Y_test.shape[0],-1)

# 定义模型
class Model(torch.nn.Module):
    def __init__(self,n_input_features):
        super(Model,self).__init__()
        self.linear = torch.nn.Linear(n_input_features,1)
        
    def forward(self,x):
        return torch.sigmoid(self.linear(x))

model = Model(X_train.shape[1])
# 定义损失函数
loss = torch.nn.BCELoss()
# 定义优化器
learning_rate = 0.001
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate)

# 梯度下降函数
def gradient_descent():
    # 预测Y值
    pre_y = model(X_train)
    # 计算损失
    l = loss(pre_y,Y_train)
    # 反向传播
    l.backward()
    # 梯度更新
    optimizer.step()
    # 梯度清空
    optimizer.zero_grad()
    return l,list(model.parameters())

# 模型训练
for i in range(10000):
    l,p = gradient_descent()
    print(l,p)

# 模型测试
mapping = {0:"TD",1:"ADHD"}
index = np.random.randint(0,X_test.shape[0])
pre_y = model(X_test[index])
pre_y = mapping[int(pre_y.round().item())]
gt_y = mapping[int(Y_test[index].item())]
print(pre_y,gt_y)


# 计算模型准确率
pres_y = model(X_test).round()
result = np.where(pres_y==Y_test,1,0)
ac = np.sum(result)/result.size
print(ac)

即使调整参数后,损失在0.68左右就不会再下降了。

最终的准确率只有54%-60%,我会在后面的笔记中使用深度神经网络来重新训练,提升模型精度。

相关推荐
gorgeous(๑>؂<๑)1 分钟前
【北理工-AAAI26】MODA:首个无人机多光谱目标检测数据集
人工智能·目标检测·计算机视觉·目标跟踪·无人机
嵌入式的飞鱼16 分钟前
SD NAND 焊接避坑指南:LGA-8 封装手工焊接技巧与常见错误
人工智能·stm32·单片机·嵌入式硬件·tf卡
serve the people18 分钟前
tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
人工智能·tensorflow·neo4j
serve the people24 分钟前
tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
人工智能·python·tensorflow
yzx99101338 分钟前
当AI握住方向盘:智能驾驶如何重新定义出行未来
人工智能
Sui_Network1 小时前
备受期待的 POP 射击游戏 XOCIETY 正式在 Epic Games Store 开启体验
人工智能·游戏·rpc·区块链·量子计算·graphql
漫长的~以后1 小时前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛111 小时前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai
LCG米1 小时前
嵌入式Python工业环境监测实战:MicroPython读取多传感器数据
开发语言·人工智能·python
努力的BigJiang2 小时前
Cube-slam复现及报错解决
人工智能