机器学习的一些知识点分享

解决过拟合问题的常用方法有( )。

  • A 使用丢弃法

  • B 减少模型特征

  • C 使用正则化约束

  • D 增加训练样本数量

本题得分: 0分

正确答案: A,B,C,D (少选不得分)

2.填空题 (2分)

过拟合是指模型过于复杂,学习能力太强,以至于捕捉到每一个样本数据特征。(填写:欠/过)

本题得分: 2分

正确答案:

  • 填空1 : 过

3.填空题 (2分)

模型对于训练集以外样本的预测能力称为模型的 训练能力。(填写:训练/验证/泛化)

本题得分: 0分

正确答案:

  • 填空1 : 泛化

4.判断题 (2分)

模型在训练集上的误差很小,而对于测试集的误差大于训练误差,这种现象称为欠拟合。

本题得分: 2分

正确答案: 错误

5.判断题 (2分)

模型在训练集上的误差很大,测试集的误差也大,这种现象称为过拟合。

本题得分: 2分

正确答案: 错误

6.填空题 (2分)

在机器学习中,用来训练模型的数据集称为 训练集。

本题得分: 2分

正确答案:

  • 填空1 : 训练集 / 训练数据集

7.单选题 (2分)

下面( )表示线性回归模型的L2正则项。

  • A

  • B

  • C

  • D 以上答案都不对

本题得分: 2分

正确答案: B

8.单选题 (2分)

下面( )说法是正确的。

  • A 模型越复杂,测试误差越低

  • B 模型越复杂,训练误差越低

  • C 模型越简单,测试误差越低

  • D 模型越简单,训练误差越低

本题得分: 2分

正确答案: B

9.单选题 (2分)

当数据集训练样本非常少时,可采用( )交叉验证法选择模型。

  • A 简单

  • B K-折

  • C 留一

  • D 留K

本题得分: 0分

正确答案: C

10.判断题 (2分)

最大-最小归一化方法将样本特征映射到[0,1]区间。

本题得分: 0分

相关推荐
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董2 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦2 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw3 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐3 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1233 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner4 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao4 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
我爱学Python!4 小时前
大语言模型与图结构的融合: 推荐系统中的新兴范式
人工智能·语言模型·自然语言处理·langchain·llm·大语言模型·推荐系统