机器学习的一些知识点分享

解决过拟合问题的常用方法有( )。

  • A 使用丢弃法

  • B 减少模型特征

  • C 使用正则化约束

  • D 增加训练样本数量

本题得分: 0分

正确答案: A,B,C,D (少选不得分)

2.填空题 (2分)

过拟合是指模型过于复杂,学习能力太强,以至于捕捉到每一个样本数据特征。(填写:欠/过)

本题得分: 2分

正确答案:

  • 填空1 : 过

3.填空题 (2分)

模型对于训练集以外样本的预测能力称为模型的 训练能力。(填写:训练/验证/泛化)

本题得分: 0分

正确答案:

  • 填空1 : 泛化

4.判断题 (2分)

模型在训练集上的误差很小,而对于测试集的误差大于训练误差,这种现象称为欠拟合。

本题得分: 2分

正确答案: 错误

5.判断题 (2分)

模型在训练集上的误差很大,测试集的误差也大,这种现象称为过拟合。

本题得分: 2分

正确答案: 错误

6.填空题 (2分)

在机器学习中,用来训练模型的数据集称为 训练集。

本题得分: 2分

正确答案:

  • 填空1 : 训练集 / 训练数据集

7.单选题 (2分)

下面( )表示线性回归模型的L2正则项。

  • A

  • B

  • C

  • D 以上答案都不对

本题得分: 2分

正确答案: B

8.单选题 (2分)

下面( )说法是正确的。

  • A 模型越复杂,测试误差越低

  • B 模型越复杂,训练误差越低

  • C 模型越简单,测试误差越低

  • D 模型越简单,训练误差越低

本题得分: 2分

正确答案: B

9.单选题 (2分)

当数据集训练样本非常少时,可采用( )交叉验证法选择模型。

  • A 简单

  • B K-折

  • C 留一

  • D 留K

本题得分: 0分

正确答案: C

10.判断题 (2分)

最大-最小归一化方法将样本特征映射到[0,1]区间。

本题得分: 0分

相关推荐
Howie Zphile几秒前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5773 分钟前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥5 分钟前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7255 分钟前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h23 分钟前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路25 分钟前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿28 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue6123123132 分钟前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
一切尽在,你来40 分钟前
第二章 预告内容
人工智能·langchain·ai编程
23遇见44 分钟前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能