机器学习的一些知识点分享

解决过拟合问题的常用方法有( )。

  • A 使用丢弃法

  • B 减少模型特征

  • C 使用正则化约束

  • D 增加训练样本数量

本题得分: 0分

正确答案: A,B,C,D (少选不得分)

2.填空题 (2分)

过拟合是指模型过于复杂,学习能力太强,以至于捕捉到每一个样本数据特征。(填写:欠/过)

本题得分: 2分

正确答案:

  • 填空1 : 过

3.填空题 (2分)

模型对于训练集以外样本的预测能力称为模型的 训练能力。(填写:训练/验证/泛化)

本题得分: 0分

正确答案:

  • 填空1 : 泛化

4.判断题 (2分)

模型在训练集上的误差很小,而对于测试集的误差大于训练误差,这种现象称为欠拟合。

本题得分: 2分

正确答案: 错误

5.判断题 (2分)

模型在训练集上的误差很大,测试集的误差也大,这种现象称为过拟合。

本题得分: 2分

正确答案: 错误

6.填空题 (2分)

在机器学习中,用来训练模型的数据集称为 训练集。

本题得分: 2分

正确答案:

  • 填空1 : 训练集 / 训练数据集

7.单选题 (2分)

下面( )表示线性回归模型的L2正则项。

  • A

  • B

  • C

  • D 以上答案都不对

本题得分: 2分

正确答案: B

8.单选题 (2分)

下面( )说法是正确的。

  • A 模型越复杂,测试误差越低

  • B 模型越复杂,训练误差越低

  • C 模型越简单,测试误差越低

  • D 模型越简单,训练误差越低

本题得分: 2分

正确答案: B

9.单选题 (2分)

当数据集训练样本非常少时,可采用( )交叉验证法选择模型。

  • A 简单

  • B K-折

  • C 留一

  • D 留K

本题得分: 0分

正确答案: C

10.判断题 (2分)

最大-最小归一化方法将样本特征映射到[0,1]区间。

本题得分: 0分

相关推荐
dazzle几秒前
计算机视觉处理(OpenCV基础教学(二十二):霍夫变换技术详解)
人工智能·opencv·计算机视觉
狗狗学不会9 分钟前
RK3588 极致性能:使用 Pybind11 封装 MPP 实现 Python 端 8 路视频硬件解码
人工智能·python·音视频
Aevget9 分钟前
Kendo UI for jQuery 2025 Q4新版亮点 - AI 助手持续加持,主力开发更智能
人工智能·ui·jquery·界面控件·kendo ui
北京耐用通信10 分钟前
耐达讯自动化CANopen转Profibus网关在矿山机械RFID读写器应用中的技术分析
人工智能·科技·物联网·自动化·信息与通信
飞睿科技12 分钟前
UWB技术在机器人领域的创新应用与前景
网络·人工智能·机器人·定位技术·uwb技术
空山新雨后、13 分钟前
RAG:搜索引擎与大模型的完美融合
人工智能·搜索引擎·rag
sld16818 分钟前
以S2B2C平台重构快消品生态:效率升级与价值共生
大数据·人工智能·重构
love530love20 分钟前
EPGF 新手教程 21把“环境折磨”从课堂中彻底移除:EPGF 如何重构 AI / Python 教学环境?
人工智能·windows·python·重构·架构·epgf
ldccorpora21 分钟前
Chinese News Translation Text Part 1数据集介绍,官网编号LDC2005T06
数据结构·人工智能·python·算法·语音识别
大学生毕业题目21 分钟前
毕业项目推荐:99-基于yolov8/yolov5/yolo11的肾结石检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·肾结石检测