机器学习的一些知识点分享

解决过拟合问题的常用方法有( )。

  • A 使用丢弃法

  • B 减少模型特征

  • C 使用正则化约束

  • D 增加训练样本数量

本题得分: 0分

正确答案: A,B,C,D (少选不得分)

2.填空题 (2分)

过拟合是指模型过于复杂,学习能力太强,以至于捕捉到每一个样本数据特征。(填写:欠/过)

本题得分: 2分

正确答案:

  • 填空1 : 过

3.填空题 (2分)

模型对于训练集以外样本的预测能力称为模型的 训练能力。(填写:训练/验证/泛化)

本题得分: 0分

正确答案:

  • 填空1 : 泛化

4.判断题 (2分)

模型在训练集上的误差很小,而对于测试集的误差大于训练误差,这种现象称为欠拟合。

本题得分: 2分

正确答案: 错误

5.判断题 (2分)

模型在训练集上的误差很大,测试集的误差也大,这种现象称为过拟合。

本题得分: 2分

正确答案: 错误

6.填空题 (2分)

在机器学习中,用来训练模型的数据集称为 训练集。

本题得分: 2分

正确答案:

  • 填空1 : 训练集 / 训练数据集

7.单选题 (2分)

下面( )表示线性回归模型的L2正则项。

  • A

  • B

  • C

  • D 以上答案都不对

本题得分: 2分

正确答案: B

8.单选题 (2分)

下面( )说法是正确的。

  • A 模型越复杂,测试误差越低

  • B 模型越复杂,训练误差越低

  • C 模型越简单,测试误差越低

  • D 模型越简单,训练误差越低

本题得分: 2分

正确答案: B

9.单选题 (2分)

当数据集训练样本非常少时,可采用( )交叉验证法选择模型。

  • A 简单

  • B K-折

  • C 留一

  • D 留K

本题得分: 0分

正确答案: C

10.判断题 (2分)

最大-最小归一化方法将样本特征映射到[0,1]区间。

本题得分: 0分

相关推荐
ygyqinghuan19 分钟前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交21 分钟前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc3 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen3 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室4 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖5 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树5 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
丁浩6665 小时前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家6 小时前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
伏小白白白6 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习