Llama改进之——SwiGLU激活函数

引言

今天介绍LLAMA模型引入的关于激活函数的改进------SwiGLU[1](#1),该激活函数取得了不错的效果,得到了广泛地应用。

SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。

GLU

GLU(Gated Linear Units,门控线性单元)[2](#2)引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:
GLU ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) (1) \text{GLU}(x,W,V,b,c) = \sigma(xW+b) \otimes (xV+c) \tag 1 GLU(x,W,V,b,c)=σ(xW+b)⊗(xV+c)(1)

这里 W , V W,V W,V以及 b , c b,c b,c分别是这两个线性层的参数; σ ( x W + b ) \sigma(xW+b) σ(xW+b)作为门控,控制 x V + c xV+c xV+c的输出。

这里使用 σ \sigma σ作为激活函数,修改改激活函数得到的变体通常能带来更好的性能表现,比如SwiGLU修改激活函数为Swish。我们来看下Swish激活函数。

Swish

Swish[3](#3)激活函数的形式为:
Swish β ( x ) = x σ ( β x ) (2) \text{Swish}_\beta(x) = x \sigma(\beta x) \tag 2 Swishβ(x)=xσ(βx)(2)

其中 σ ( x ) \sigma(x) σ(x)是Sigmoid函数; β \beta β是一个可学习的参数。

可以通过下面的代码画出Swish激活函数在不同参数 β \beta β下的图像:

py 复制代码
import numpy as np
import matplotlib.pyplot as plt

def swish(x, beta):
  return x / (1 + np.exp(-beta*x))

x = np.linspace(-10, 10, 100)
betas = [0.1, 1.0, 10.0]

plt.figure(figsize=(10, 6))

for beta in betas:
    y = swish(x, beta)
    plt.plot(x, y, label=f'beta={beta}')

plt.legend()
plt.title('Swish Activation Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()

可以看到[3](#3),当 β \beta β趋近于 0 0 0时,Swish函数趋近于线性函数 y = x 2 y=x^2 y=x2;当 β \beta β趋近于无穷大时,Swish函数趋近于ReLU函数;当 β \beta β取值为 1 1 1时,Swish函数是光滑且非单调的,等价于参考[4](#4)中介绍的SiLU。

Swish与ReLU之间最显著的区别是当 x < 0 x < 0 x<0时Swish的非单调"凸起"[3](#3)

SwiGLU

如前文所述,将公式(1)中GLU的激活函数改为Swish即变成了所谓的SwiGLU激活函数[1](#1)
SwiGLU ( x , W , V ) = Swish β ( x W ) ⊗ ( x V ) (3) \text{SwiGLU}(x,W,V) = \text{Swish}_\beta(xW) \otimes (xV) \tag{3} SwiGLU(x,W,V)=Swishβ(xW)⊗(xV)(3)

这里省略了偏置项。

代码实现

参考LLaMA,全连接层使用带有SwiGLU激活函数的FFN(Position-wise Feed-Forward Network)的公式如下[1](#1)
FFN SwiGLU ( x , W , V , W 2 ) = ( Swish 1 ( x W ) ⊗ x V ) W 2 (4) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{Swish}_1(\pmb xW) \otimes \pmb xV)W_2 \tag 4 FFNSwiGLU(x,W,V,W2)=(Swish1(xW)⊗xV)W2(4)

这里的Swish函数可以被SiLU函数替代:
SiLU ( x ) = x σ ( x ) \text{SiLU}(\pmb x) = \pmb x \sigma(\pmb x) SiLU(x)=xσ(x)

即:
FFN SwiGLU ( x , W , V , W 2 ) = ( SiLU ( x W ) ⊗ x V ) W 2 (5) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{SiLU}(\pmb xW) \otimes \pmb xV)W_2 \tag 5 FFNSwiGLU(x,W,V,W2)=(SiLU(xW)⊗xV)W2(5)

py 复制代码
import torch
from torch import nn
import torch.nn.functional as F

class FeedForward(nn.Module):
    def __init__(self, hidden_size: int, intermediate_size: int) -> None:
       	super().__init__()

        self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (batch_size, seq_len, hidden_size)
        # w1(x) -> (batch_size, seq_len, intermediate_size)
        # w1(x) -> (batch_size, seq_len, intermediate_size)
        # w2(*) -> (batch_size, seq_len, hidden_size)
    	return self.w2(F.silu(self.w1(x)) * self.w3(x))
            

这里w1,w2,w3分别对应公式(5)中的 W , W 2 , V W,W_2,V W,W2,V。

注意维度,其中w1,w3x转换到维度intermediate_size,然后w2转换回hidden_size

参考


  1. [论文翻译]GLU Variants Improve Transformer ↩︎ ↩︎ ↩︎

  2. [论文笔记]Language Modeling with Gated Convolutional Networks ↩︎

  3. [论文笔记]SEARCHING FOR ACTIVATION FUNCTIONS ↩︎ ↩︎ ↩︎

  4. [论文笔记]GAUSSIAN ERROR LINEAR UNITS (GELUS) ↩︎

相关推荐
晨尘光2 天前
在Windows下编译出llama_cpp_python的DLL后,在虚拟环境中使用方法
python·llama
风筝超冷4 天前
LLaMA-Factory - 批量推理(inference)的脚本
llama
bluebonnet275 天前
【agent开发】部署LLM(一)
python·llama
阿牛大牛中6 天前
LLaDa——基于 Diffusion 的大语言模型 打平 LLama 3
人工智能·语言模型·llama
Lilith的AI学习日记6 天前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
LChuck9 天前
【大模型微调】魔搭社区GPU进行LLaMA-Factory微调大模型自我认知
人工智能·语言模型·自然语言处理·nlp·llama·魔搭社区·modelscope
燕双嘤9 天前
Fine-tuning:微调技术,训练方式,LLaMA-Factory,ms-swift
llama
装不满的克莱因瓶11 天前
【小白AI教程】大模型知识扫盲通识
人工智能·数学建模·ai·大模型·llm·llama·rag
TGITCIC14 天前
英伟达破局1000 Token/秒!Llama 4以光速重塑AI推理边界
人工智能·大模型·llama·英伟达·大模型速度·ai赛道·大模型基座
天天爱吃肉821815 天前
【 大模型技术驱动智能网联汽车革命:关键技术解析与未来趋势】
语言模型·汽车·llama