Llama改进之——SwiGLU激活函数

引言

今天介绍LLAMA模型引入的关于激活函数的改进------SwiGLU^1^,该激活函数取得了不错的效果,得到了广泛地应用。

SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。

GLU

GLU(Gated Linear Units,门控线性单元)^2^引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:
GLU ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) (1) \text{GLU}(x,W,V,b,c) = \sigma(xW+b) \otimes (xV+c) \tag 1 GLU(x,W,V,b,c)=σ(xW+b)⊗(xV+c)(1)

这里 W , V W,V W,V以及 b , c b,c b,c分别是这两个线性层的参数; σ ( x W + b ) \sigma(xW+b) σ(xW+b)作为门控,控制 x V + c xV+c xV+c的输出。

这里使用 σ \sigma σ作为激活函数,修改改激活函数得到的变体通常能带来更好的性能表现,比如SwiGLU修改激活函数为Swish。我们来看下Swish激活函数。

Swish

Swish^3^激活函数的形式为:
Swish β ( x ) = x σ ( β x ) (2) \text{Swish}_\beta(x) = x \sigma(\beta x) \tag 2 Swishβ(x)=xσ(βx)(2)

其中 σ ( x ) \sigma(x) σ(x)是Sigmoid函数; β \beta β是一个可学习的参数。

可以通过下面的代码画出Swish激活函数在不同参数 β \beta β下的图像:

py 复制代码
import numpy as np
import matplotlib.pyplot as plt

def swish(x, beta):
  return x / (1 + np.exp(-beta*x))

x = np.linspace(-10, 10, 100)
betas = [0.1, 1.0, 10.0]

plt.figure(figsize=(10, 6))

for beta in betas:
    y = swish(x, beta)
    plt.plot(x, y, label=f'beta={beta}')

plt.legend()
plt.title('Swish Activation Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()

可以看到^3^,当 β \beta β趋近于 0 0 0时,Swish函数趋近于线性函数 y = x 2 y=x^2 y=x2;当 β \beta β趋近于无穷大时,Swish函数趋近于ReLU函数;当 β \beta β取值为 1 1 1时,Swish函数是光滑且非单调的,等价于参考^4^中介绍的SiLU。

Swish与ReLU之间最显著的区别是当 x < 0 x < 0 x<0时Swish的非单调"凸起"^3^。

SwiGLU

如前文所述,将公式(1)中GLU的激活函数改为Swish即变成了所谓的SwiGLU激活函数^1^:
SwiGLU ( x , W , V ) = Swish β ( x W ) ⊗ ( x V ) (3) \text{SwiGLU}(x,W,V) = \text{Swish}_\beta(xW) \otimes (xV) \tag{3} SwiGLU(x,W,V)=Swishβ(xW)⊗(xV)(3)

这里省略了偏置项。

代码实现

参考LLaMA,全连接层使用带有SwiGLU激活函数的FFN(Position-wise Feed-Forward Network)的公式如下^1^:
FFN SwiGLU ( x , W , V , W 2 ) = ( Swish 1 ( x W ) ⊗ x V ) W 2 (4) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{Swish}_1(\pmb xW) \otimes \pmb xV)W_2 \tag 4 FFNSwiGLU(x,W,V,W2)=(Swish1(xW)⊗xV)W2(4)

这里的Swish函数可以被SiLU函数替代:
SiLU ( x ) = x σ ( x ) \text{SiLU}(\pmb x) = \pmb x \sigma(\pmb x) SiLU(x)=xσ(x)

即:
FFN SwiGLU ( x , W , V , W 2 ) = ( SiLU ( x W ) ⊗ x V ) W 2 (5) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{SiLU}(\pmb xW) \otimes \pmb xV)W_2 \tag 5 FFNSwiGLU(x,W,V,W2)=(SiLU(xW)⊗xV)W2(5)

py 复制代码
import torch
from torch import nn
import torch.nn.functional as F

class FeedForward(nn.Module):
    def __init__(self, hidden_size: int, intermediate_size: int) -> None:
       	super().__init__()

        self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (batch_size, seq_len, hidden_size)
        # w1(x) -> (batch_size, seq_len, intermediate_size)
        # w1(x) -> (batch_size, seq_len, intermediate_size)
        # w2(*) -> (batch_size, seq_len, hidden_size)
    	return self.w2(F.silu(self.w1(x)) * self.w3(x))
            

这里w1,w2,w3分别对应公式(5)中的 W , W 2 , V W,W_2,V W,W2,V。

注意维度,其中w1,w3x转换到维度intermediate_size,然后w2转换回hidden_size

参考


  1. [论文翻译]GLU Variants Improve Transformer ↩︎ ↩︎ ↩︎

  2. [论文笔记]Language Modeling with Gated Convolutional Networks ↩︎

  3. [论文笔记]SEARCHING FOR ACTIVATION FUNCTIONS ↩︎ ↩︎ ↩︎

  4. [论文笔记]GAUSSIAN ERROR LINEAR UNITS (GELUS) ↩︎

相关推荐
Funny_AI_LAB6 小时前
MetaAI最新开源Llama3.2亮点及使用指南
算法·计算机视觉·语言模型·llama·facebook
大模型八哥13 小时前
大模型扫盲系列——大模型实用技术介绍(上)
人工智能·程序人生·ai·大模型·llm·llama·ai大模型
龙的爹23331 天前
论文翻译 | LLaMA-Adapter :具有零初始化注意的语言模型的有效微调
人工智能·gpt·语言模型·自然语言处理·nlp·prompt·llama
Yoin.2 天前
Llama微调以及Ollama部署
llama
强哥之神4 天前
一文了解:最新版本 Llama 3.2
人工智能·深度学习·机器学习·计算机视觉·语言模型·llm·llama
机器学习是魔鬼5 天前
在矩池云使用 Llama-3.2-11B-Vision 详细指南
llama
刘承卓5 天前
【Text2SQL】当前在BIRD基准测试集上取得SOTA的论文
gpt·自然语言处理·prompt·aigc·llama
程序员陆通6 天前
Meta Llama 3.2发布:小型文本模型与多模态视觉能力,AI的未来已来!
人工智能·llama
HyperAI超神经6 天前
凌晨1点开播!Meta Connect 2024开发者大会,聚焦Llama新场景和AR眼镜
ar·llama
OpenVINO 中文社区6 天前
实战精选 | 如何用 OpenVINO™ 在本地快速部署 Llama 3.2
人工智能·llama·openvino