pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
阿正的梦工坊7 小时前
Megatron中--train-iters和--max_epochs两个参数介绍
人工智能·深度学习·自然语言处理
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(四)语音识别和触发字检测
深度学习·ai
青瓷程序设计9 小时前
【交通标志识别系统】python+深度学习+算法模型+Resnet算法+人工智能+2026计算机毕设项目
人工智能·python·深度学习
香芋Yu9 小时前
【深度学习教程——01_深度基石(Foundation)】05_数据太多怎么吃?Mini-batch训练的设计模式
深度学习·设计模式·batch
学步_技术10 小时前
多模态学习—A Survey of Multimodal Learning: Methods, Applications, and Future
人工智能·深度学习·计算机视觉
2501_9333295510 小时前
Infoseek数字公关AI中台:基于深度学习的全链路智能舆情处置系统架构解析与实战应用
人工智能·深度学习·系统架构
AndrewHZ10 小时前
【AI黑话日日新】什么是大模型的test-time scaling?
人工智能·深度学习·大模型·llm·推理加速·测试时缩放
学步_技术11 小时前
多模态学习—Multimodal image synthesis and editing: A survey and taxonomy
人工智能·深度学习·计算机视觉
工程师老罗11 小时前
Pytorch模型GPU训练
人工智能·pytorch·深度学习