pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
觉醒大王3 分钟前
如何让综述自然引出你的理论框架?
论文阅读·深度学习·学习·自然语言处理·学习方法
Yngz_Miao34 分钟前
【深度学习】交叉熵损失函数Cross-Entropy Loss
人工智能·深度学习·损失函数·交叉熵·ce
奔袭的算法工程师1 小时前
CRN源码详细解析(4)-- 图像骨干网络之DepthNet和ViewAggregation
人工智能·pytorch·深度学习·目标检测·自动驾驶
落雨盛夏3 小时前
深度学习|李哥考研2
人工智能·深度学习
xiaoli23273 小时前
DBConformer论文精读
深度学习
HyperAI超神经4 小时前
具身智能资源汇总:机器人学习数据集,在线体验世界建模模型,英伟达/字节/小米等最新研究论文
人工智能·深度学习·学习·机器学习·机器人·ai编程·图形生成
IT阳晨。5 小时前
【CNN卷积神经网络(吴恩达)】深度卷积网络(实例探究)学习笔记
深度学习·cnn
LaughingZhu6 小时前
Product Hunt 每日热榜 | 2026-01-23
人工智能·经验分享·深度学习·神经网络·产品运营
Blossom.1186 小时前
用纯 NLP 打造「零样本」时序预测模型:文本化序列 + LLM 的实战路线
人工智能·python·深度学习·机器学习·自然语言处理·架构·transformer
觉醒大王6 小时前
医学好投的普刊分享
前端·论文阅读·深度学习·学习·自然语言处理·学习方法