pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
居7然6 小时前
ChatGPT是怎么学会接龙的?
深度学习·语言模型·chatgpt·性能优化·transformer
${王小剑}9 小时前
深度学习损失函数
人工智能·深度学习
AI即插即用9 小时前
即插即用系列(代码实践)专栏介绍
开发语言·人工智能·深度学习·计算机视觉
Keep__Fighting9 小时前
【神经网络的训练策略选取】
人工智能·深度学习·神经网络·算法
xiaobaishuoAI10 小时前
分布式事务实战(Seata 版):解决分布式系统数据一致性问题(含代码教学)
大数据·人工智能·分布式·深度学习·wpf·geo
2501_9421917710 小时前
【深度学习实战】数字仪表字符识别项目详解——基于YOLO11-HAFB-2模型的优化实现
人工智能·深度学习
Where-10 小时前
深度学习中的过拟合问题及解决方式
人工智能·深度学习
努力毕业的小土博^_^11 小时前
【地学应用】溜砂坡scree slope / talus slope的定义、机制、分布、危害、与滑坡区别、研究方向与代表论文
人工智能·深度学习·遥感·地质灾害·地学应用
落雨盛夏11 小时前
26深度学习|李哥1
人工智能·深度学习
2501_9413220311 小时前
【蚕桑业】【深度学习】基于VFNet的蚕虫智能检测与识别系统实现与应用
人工智能·深度学习