pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
老马啸西风11 分钟前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
Cathyqiii28 分钟前
Diff-MTS: Temporal-Augmented ConditionalDiffusion-Based AIGC
深度学习·aigc
chataipaper00231 分钟前
10款免费降ai率工具合集,轻松搞定论文降AIGC!【2025学姐亲测】
人工智能·深度学习·aigc·降ai·论文ai率
cyyt1 小时前
深度学习周报(12.8~12.14)
人工智能·深度学习
【建模先锋】1 小时前
多源信息融合!基于特征信号VMD分解+CNN-Transformer的故障诊断模型!
人工智能·深度学习·cnn·transformer·故障诊断·多源信息融合
中國龍在廣州1 小时前
AI顶会ICML允许AI参与审稿
人工智能·深度学习·算法·机器学习·chatgpt
自动驾驶小学生1 小时前
Transformer和LLM前沿内容(1):Transformer and LLM(注定成为经典)
人工智能·深度学习·llm·transformer
longvoyage2 小时前
MindSpore社区活动:在对抗中增强网络
网络·人工智能·深度学习
AI即插即用2 小时前
即插即用系列 | MICCAI EM-Net:融合 Mamba 与频域学习的高效 3D 医学图像分割网络
网络·人工智能·深度学习·神经网络·学习·计算机视觉·视觉检测
祝余Eleanor3 小时前
DAY 39 Dataset和Dataloader
人工智能·深度学习·神经网络·机器学习