pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
weixin_4684668531 分钟前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
LiFileHub4 小时前
深度学习全景解析:从技术原理到十大领域落地实践
人工智能·深度学习
Silence_Jy4 小时前
Kimi K2技术报告
人工智能·python·深度学习·transformer
最晚的py4 小时前
rnn循环神经网络
人工智能·rnn·深度学习·神经网络
雍凉明月夜5 小时前
深度学习网络笔记Ⅲ(注意力机制)
笔记·深度学习·神经网络·分类
十铭忘6 小时前
SAM2跟踪的理解19——位置编码
人工智能·深度学习·计算机视觉
张二娃同学6 小时前
深度学习入门篇——Github的使用和项目的导入
人工智能·git·深度学习·开源·github
一个处女座的程序猿O(∩_∩)O6 小时前
transformer模型:彻底改变AI格局的革命性架构
人工智能·深度学习·transformer
水龙吟啸6 小时前
基于Orbbec-Gemini深度相机与SFM-2D to 3D重建算法、手部识别视觉算法、Unity运动控制的3D水果切割游戏
python·深度学习·神经网络·c#·游戏引擎·3d视觉·3d重建
白日做梦Q7 小时前
数据增强策略:不仅仅是旋转和翻转
人工智能·深度学习