pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
ziwu1 分钟前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
ziwu22 分钟前
海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
WWZZ202538 分钟前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
浩浩的代码花园6 小时前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
晨非辰6 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
这张生成的图像能检测吗9 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
编程小白_正在努力中19 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海19 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
H***997621 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
FL16238631291 天前
无人机视角航拍河道漂浮物垃圾识别分割数据集labelme格式256张1类别
深度学习