pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
橡晟6 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子6 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01056 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
Leah01057 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
九章云极AladdinEdu10 小时前
摩尔线程MUSA架构深度调优指南:从CUDA到MUSA的显存访问模式重构原则
人工智能·pytorch·深度学习·机器学习·语言模型·tensorflow·gpu算力
嘗_13 小时前
机器学习/深度学习训练day1
人工智能·深度学习·机器学习
墨尘游子14 小时前
一文读懂循环神经网络(RNN)—语言模型+n元语法(1)
人工智能·python·rnn·深度学习·神经网络·语言模型
墨尘游子15 小时前
一文读懂循环神经网络(RNN)—语言模型+读取长序列数据(2)
人工智能·python·深度学习
点云SLAM15 小时前
PyTorch张量(Tensor)创建的方式汇总详解和代码示例
人工智能·pytorch·python·深度学习·机器学习·张量创建方式
AndrewHZ16 小时前
【图像处理基石】什么是色盲仿真技术?
图像处理·人工智能·pytorch·深度学习·计算机视觉·颜色科学·hvs