pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
OpenCSG11 分钟前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
All The Way North-25 分钟前
RNN基本介绍
rnn·深度学习·nlp·循环神经网络·时间序列
yatingliu201929 分钟前
将深度学习环境迁移至老旧系统| 个人学习笔记
笔记·深度学习·学习
kebijuelun44 分钟前
REAP the Experts:去掉 MoE 一半专家还能保持性能不变
人工智能·gpt·深度学习·语言模型·transformer
ldccorpora1 小时前
Multiple-Translation Arabic (MTA) Part 2数据集介绍,官网编号LDC2005T05
人工智能·深度学习·自然语言处理·动态规划·语音识别
其美杰布-富贵-李3 小时前
深度学习中的 tmux
服务器·人工智能·深度学习·tmux
LaughingZhu4 小时前
Product Hunt 每日热榜 | 2026-01-12
人工智能·经验分享·深度学习·神经网络·产品运营
不如自挂东南吱4 小时前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
长颈鹿仙女4 小时前
深度学习详解拟合,过拟合,欠拟合
人工智能·深度学习
知乎的哥廷根数学学派4 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习