pytorch 梯度更新过程

这段代码片段展示了使用 PyTorch 进行模型训练的常见步骤。

复制代码
optimizer.zero_grad()
loss_sum.backward()
optimizer.step()

在这个代码片段中,假设你已经定义了一个模型,并且有一个损失函数 loss,以及一个优化器 optimizer

下面是这段代码的解释:

  1. optimizer.zero_grad(): 这一步用于清除之前计算的梯度。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。

  2. loss_sum.backward(): 这一步用于计算损失函数关于模型参数的梯度。通过调用 backward() 方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的 .grad 属性中。

  3. optimizer.step(): 这一步用于更新模型的参数。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。调用 step() 方法可以更新模型的参数值,使其朝着最优方向移动。

通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。

请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。

相关推荐
csdn_life187 小时前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
Coding茶水间7 小时前
基于深度学习的猪识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
Sunhen_Qiletian8 小时前
深度学习之模型的部署、web框架 服务端及客户端案例
人工智能·深度学习
LaughingZhu9 小时前
Product Hunt 每日热榜 | 2026-02-15
人工智能·经验分享·深度学习·神经网络·产品运营
cyforkk10 小时前
YAML 配置文件中的常见陷阱:内联字典与块映射混用
人工智能·深度学习·机器学习
月光有害11 小时前
深入解析批归一化 (Batch Normalization): 稳定并加速深度学习的基石
开发语言·深度学习·batch
Suryxin.12 小时前
从0开始复现nano-vllm「llm_engine.py」
人工智能·python·深度学习·ai·vllm
冰西瓜60013 小时前
深度学习的数学原理(九)—— 神经网络为什么能学习特征?
深度学习·神经网络·学习
Suryxin.13 小时前
从0开始复现nano-vllm「model_runner-py」下半篇之核心数据编排与执行引擎调度
人工智能·pytorch·深度学习·ai·vllm
Clarence Liu13 小时前
用大白话讲解人工智能(8) 循环神经网络(RNN):AI怎么“听懂“语音
人工智能·rnn·深度学习