python数据处理与分析入门-pandas使用(3)

往期文章:

  1. pandas使用1
  2. pandas使用2

Pandas库基础操作 - 利用pandas查询数据

这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集、指定行、指定列等。我们先导入一个student数据集

python 复制代码
stu_dic = {'Age':[14,13,13,14,14,12,12,15,13,12,11,14,12,15,16,12,15,11,15],
'Height':[69,56.5,65.3,62.8,63.5,57.3,59.8,62.5,62.5,59,51.3,64.3,56.3,66.5,72,64.8,67,57.5,66.5],
'Name':['Alfred','Alice','Barbara','Carol','Henry','James','Jane','Janet','Jeffrey','John','Joyce','Judy','Louise','Marry','Philip','Robert','Ronald','Thomas','Willam'],
'Sex':['M','F','F','F','M','M','F','F','M','M','F','F','F','F','M','M','M','M','M'],
'Weight':[112.5,84,98,102.5,102.5,83,84.5,112.5,84,99.5,50.5,90,77,112,150,128,133,85,112]}
student = pd.DataFrame(stu_dic)

查询数据的前5行或末尾5行

python 复制代码
print(student.head())
print(student.tail())
# 输出
   Age  Height     Name Sex  Weight
0   14    69.0   Alfred   M   112.5
1   13    56.5    Alice   F    84.0
2   13    65.3  Barbara   F    98.0
3   14    62.8    Carol   F   102.5
4   14    63.5    Henry   M   102.5

    Age  Height    Name Sex  Weight
14   16    72.0  Philip   M   150.0
15   12    64.8  Robert   M   128.0
16   15    67.0  Ronald   M   133.0
17   11    57.5  Thomas   M    85.0
18   15    66.5  Willam   M   112.0

查询指定的行

student.iloc[[0,2,4,5,7]] #这里的loc索引标签函数必须是中括号[]

python 复制代码
print(student.iloc[[0,2,4,5,7]])
# 输出
   Age  Height     Name Sex  Weight
0   14    69.0   Alfred   M   112.5
2   13    65.3  Barbara   F    98.0
4   14    63.5    Henry   M   102.5
5   12    57.3    James   M    83.0
7   15    62.5    Janet   F   112.5

查询指定的列

student[['Name','Height','Weight']].head() #如果多个列的话,必须使用双重中括号

python 复制代码
print(student[['Name','Height','Weight']].head())
# 输出
 Name  Height  Weight
0   Alfred    69.0   112.5
1    Alice    56.5    84.0
2  Barbara    65.3    98.0
3    Carol    62.8   102.5
4    Henry    63.5   102.5

练习:查询出所有12岁以上的女生信息

python 复制代码
print(student[(student['Sex']=='F') & (student['Age']>12)])
# 输出
 Age  Height     Name Sex  Weight
1    13    56.5    Alice   F    84.0
2    13    65.3  Barbara   F    98.0
3    14    62.8    Carol   F   102.5
7    15    62.5    Janet   F   112.5
11   14    64.3     Judy   F    90.0
13   15    66.5    Marry   F   112.0

上面的查询逻辑其实非常的简单,需要注意的是,如果是多个条件的查询,必须在&(且)或者|(或)的两端条件用括号括起来。

更多内容请查看我的gittee仓库 : Python基础练习

相关推荐
用户83562907805113 分钟前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_14 分钟前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机7 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机8 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i8 小时前
drf初步梳理
python·django
每日AI新事件8 小时前
python的异步函数
python
这里有鱼汤9 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook18 小时前
Manim实现脉冲闪烁特效
后端·python·动效