【西瓜书机器学习】第五章 神经网络

一起啃西瓜书(5)-神经网络《机器学习-周志华》 - 知乎 (zhihu.com)参考进行自我复习整理,侵删!

1、神经元模型
  1. 神经网络定义:神经网络是由 具有适应性简单单元 组成的广泛 并行互连 的网络。
  2. M-P神经元模型:输入、处理、输出

第二步超过阈值则兴奋(做出反应),否则不兴奋(没反应) ,通过f(x)阶跃函数实现,但阶跃函数不连续,使用sigmoid函数。

2、感知机
  1. 组成:两层,输入层 接受外界信号、输出层是"M-P神经元"。

  2. 明确:输入层 的神经元不是"M-P神经元",他们**没有"阈值"**可言,无激活函数

  3. 把阈值转换为类似权重*输入值 的形式:

  4. 学习规则:对于一个样例(x,y),当前感知机的输出为 𝑦^,也就是y为根据x得到的真实的y,也是我们期望感知机能得到的y,但是感知机实际输出的为 𝑦^,两者之间的差距为y- 𝑦^,为了使输出更接近,也就是使y- 𝑦^最小化,我们需要调整感知机参数(所有权重及阈值,阈值已经被转换为了权重形式),调整公式如下:

    也就是学习率越大,调整幅度越大;感知机输出与实际之间的差距越大,调整幅度越大;该神经元的输入值越大,调整幅度越大。同时我们也可以得到如下结论:

  • 若感知机预测正确,不需要调整
  • w向着预测正确的方向调整
  • 根据错误的程度对参数进行调
  1. 可解决问题:线性可分问题。也就是在坐标系中两种类型之间可以用一条线划分开,比如与或非问题可划分如下,其中蓝色为正样本,绿色为负样本。

但是异或问题至少要用两条线才可分割开,如下图所示,这也就意味着感知机无法解决该问题,需要引入两层感知机来解决。

相关推荐
8个贝壳19 分钟前
开发者福音!一键聚合GPT-5.1、Claude 4.5:我的高性价比AI模型中转站实战分享
人工智能
liliangcsdn21 分钟前
如何从二项分布中抽取样本 - binomial
大数据·人工智能
北京耐用通信25 分钟前
耐达讯自动化Profibus光纤转换器为您的水处理系统装上“光纤高速路”,数据从此畅通无阻!
网络·人工智能·科技·网络协议·自动化·信息与通信
老蒋新思维26 分钟前
创客匠人 2025 峰会深度解析:AI 激活创始人 IP 变现的核心价值
网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
仙女修炼史34 分钟前
目标分割学习之U_net
人工智能·深度学习·学习
nix.gnehc36 分钟前
PyTorch自动求导
人工智能·pytorch·python
多恩Stone36 分钟前
【Pytorch 深入理解(2)】减少训练显存-Gradient Checkpointing
人工智能·pytorch·python
MM_MS37 分钟前
C# 线程与并发编程完全指南:从基础到高级带详细注释版(一篇读懂)
开发语言·机器学习·计算机视觉·c#·简单工厂模式·visual studio
Dfreedom.39 分钟前
机器学习模型误差深度解读:从三类来源到偏差-方差权衡
人工智能·深度学习·机器学习·误差·偏差方差权衡
serve the people41 分钟前
tensorflow tf.function 的 多态性(Polymorphism)
人工智能·python·tensorflow