【西瓜书机器学习】第五章 神经网络

一起啃西瓜书(5)-神经网络《机器学习-周志华》 - 知乎 (zhihu.com)参考进行自我复习整理,侵删!

1、神经元模型
  1. 神经网络定义:神经网络是由 具有适应性简单单元 组成的广泛 并行互连 的网络。
  2. M-P神经元模型:输入、处理、输出

第二步超过阈值则兴奋(做出反应),否则不兴奋(没反应) ,通过f(x)阶跃函数实现,但阶跃函数不连续,使用sigmoid函数。

2、感知机
  1. 组成:两层,输入层 接受外界信号、输出层是"M-P神经元"。

  2. 明确:输入层 的神经元不是"M-P神经元",他们**没有"阈值"**可言,无激活函数

  3. 把阈值转换为类似权重*输入值 的形式:

  4. 学习规则:对于一个样例(x,y),当前感知机的输出为 𝑦^,也就是y为根据x得到的真实的y,也是我们期望感知机能得到的y,但是感知机实际输出的为 𝑦^,两者之间的差距为y- 𝑦^,为了使输出更接近,也就是使y- 𝑦^最小化,我们需要调整感知机参数(所有权重及阈值,阈值已经被转换为了权重形式),调整公式如下:

    也就是学习率越大,调整幅度越大;感知机输出与实际之间的差距越大,调整幅度越大;该神经元的输入值越大,调整幅度越大。同时我们也可以得到如下结论:

  • 若感知机预测正确,不需要调整
  • w向着预测正确的方向调整
  • 根据错误的程度对参数进行调
  1. 可解决问题:线性可分问题。也就是在坐标系中两种类型之间可以用一条线划分开,比如与或非问题可划分如下,其中蓝色为正样本,绿色为负样本。

但是异或问题至少要用两条线才可分割开,如下图所示,这也就意味着感知机无法解决该问题,需要引入两层感知机来解决。

相关推荐
锋行天下3 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮4 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水4 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊5 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘5 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15885 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14555 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI6 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment
xier_ran6 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
Jay20021116 小时前
【机器学习】27 异常检测(密度估计)
人工智能·机器学习