【西瓜书机器学习】第五章 神经网络

一起啃西瓜书(5)-神经网络《机器学习-周志华》 - 知乎 (zhihu.com)参考进行自我复习整理,侵删!

1、神经元模型
  1. 神经网络定义:神经网络是由 具有适应性简单单元 组成的广泛 并行互连 的网络。
  2. M-P神经元模型:输入、处理、输出

第二步超过阈值则兴奋(做出反应),否则不兴奋(没反应) ,通过f(x)阶跃函数实现,但阶跃函数不连续,使用sigmoid函数。

2、感知机
  1. 组成:两层,输入层 接受外界信号、输出层是"M-P神经元"。

  2. 明确:输入层 的神经元不是"M-P神经元",他们**没有"阈值"**可言,无激活函数

  3. 把阈值转换为类似权重*输入值 的形式:

  4. 学习规则:对于一个样例(x,y),当前感知机的输出为 𝑦^,也就是y为根据x得到的真实的y,也是我们期望感知机能得到的y,但是感知机实际输出的为 𝑦^,两者之间的差距为y- 𝑦^,为了使输出更接近,也就是使y- 𝑦^最小化,我们需要调整感知机参数(所有权重及阈值,阈值已经被转换为了权重形式),调整公式如下:

    也就是学习率越大,调整幅度越大;感知机输出与实际之间的差距越大,调整幅度越大;该神经元的输入值越大,调整幅度越大。同时我们也可以得到如下结论:

  • 若感知机预测正确,不需要调整
  • w向着预测正确的方向调整
  • 根据错误的程度对参数进行调
  1. 可解决问题:线性可分问题。也就是在坐标系中两种类型之间可以用一条线划分开,比如与或非问题可划分如下,其中蓝色为正样本,绿色为负样本。

但是异或问题至少要用两条线才可分割开,如下图所示,这也就意味着感知机无法解决该问题,需要引入两层感知机来解决。

相关推荐
秀儿还能再秀1 小时前
神经网络(系统性学习三):多层感知机(MLP)
神经网络·学习笔记·mlp·多层感知机
ZHOU_WUYI2 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1232 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界3 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221513 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2513 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
FreedomLeo14 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
浊酒南街4 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
风间琉璃""4 小时前
二进制与网络安全的关系
安全·机器学习·网络安全·逆向·二进制
畅联云平台4 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网