java版数据结构:堆,大根堆,小根堆

目录

堆的基本概念:

如何将一个二叉树调整成一个大根堆:

转成大根堆的时间复杂度

根堆中的插入,取出数据:


堆的基本概念:

堆是一种特殊的树形数据结构,它满足以下两个性质:

  1. 堆是一个完全二叉树,即除了最后一层外,其他层都是满的,并且最后一层的节点都尽量靠左排列。
  2. 堆中每个节点的值都大于等于(或小于等于)其子节点的值,根节点的值最大(或最小)。

根据第二个性质,堆可以分为最大堆和最小堆:

  • 最大堆:每个节点的值都大于等于其子节点的值,根节点的值最大。(又称大根堆)
  • 最小堆:每个节点的值都小于等于其子节点的值,根节点的值最小。(又称小根堆)

堆通常用于实现优先队列,可以高效地插入、删除和获取具有最高(或最低)优先级的元素。常见的堆有二叉堆、斐波那契堆等。


如何将一个二叉树调整成一个大根堆:

要将一个二叉树调整成一个大根堆,可以采用堆排序的思想,从最后一个非叶子节点开始,依次向上调整每个节点,使其满足大根堆的性质。以下是一个示例的Java代码实现:

java 复制代码
class MaxHeap {
    public void heapify(int[] arr) {
        int n = arr.length;
        
        // 从最后一个非叶子节点开始向上调整
        for (int i = n / 2 - 1; i >= 0; i--) {
            heapifyUtil(arr, n, i);
        }
    }
    
    private void heapifyUtil(int[] arr, int n, int i) {
        int largest = i;  // 初始化最大值为当前节点
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        
        // 找出当前节点、左子节点和右子节点中的最大值
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        
        // 如果最大值不是当前节点,则交换位置并递归调整
        if (largest != i) {
            int temp = arr[i];
            arr[i] = arr[largest];
            arr[largest] = temp;
            
            heapifyUtil(arr, n, largest);
        }
    }
}

假设我们有一个数组 arr = {4, 10, 3, 5, 1},我们希望将其调整成一个大根堆。我们可以使用上面提供的 MaxHeap 类中的 heapify() 方法来实现。

java 复制代码
public class Main {
    public static void main(String[] args) {
        int[] arr = {4, 10, 3, 5, 1};
        
        MaxHeap maxHeap = new MaxHeap();
        maxHeap.heapify(arr);
        
        System.out.println("大根堆数组:");
        for (int num : arr) {
            System.out.print(num + " ");
        }
    }
}

在上面的示例中,我们将数组 {4, 10, 3, 5, 1} 调整成大根堆后,输出结果应该为 {10, 5, 3, 4, 1}

调成小根堆同理。


转成大根堆的时间复杂度

在将一个数组调整成大根堆的过程中,我们从最后一个非叶子节点开始,依次向上调整每个节点,使得每个节点都满足大根堆的性质。

  1. 从最后一个非叶子节点开始,向上遍历直到根节点。对于一个具有n个节点的完全二叉树,最后一个非叶子节点的索引为n/2 - 1。

  2. 在每个节点处,我们需要执行以下操作:

    • 比较当前节点与其左右子节点的值,找出其中最大的值。
    • 如果最大值不是当前节点的值,则交换当前节点与最大子节点的值。
    • 继续向下递归调整交换后的子节点,直到满足大根堆的性质。
  3. 因为每个节点最多需要比较和交换O(log n)次,而最后一个非叶子节点的数量是n/2,所以整个调整过程的时间复杂度为O(n)。

因此,将一个数组调整成大根堆的时间复杂度为O(n)。


根堆中的插入,取出数据:

如果您想在 Java 中实现向大根堆中插入元素和从大根堆中取出最大元素的操作,您可以修改 MaxHeap 类,添加 insert()extractMax() 方法。下面是一个示例代码:

java 复制代码
public class MaxHeap {
    public void heapify(int[] arr) {
        int n = arr.length;
        
        for (int i = n / 2 - 1; i >= 0; i--) {
            heapifyUtil(arr, n, i);
        }
    }
    
    private void heapifyUtil(int[] arr, int n, int i) {
        int largest = i;
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        
        if (largest != i) {
            int temp = arr[i];
            arr[i] = arr[largest];
            arr[largest] = temp;
            
            heapifyUtil(arr, n, largest);
        }
    }
    
    public void insert(int[] arr, int key) {
        // 将新元素插入到数组末尾
        arr[arr.length] = key;
        
        // 从新元素的父节点开始向上调整
        int i = arr.length;
        while (i > 0 && arr[(i-1)/2] < arr[i]) {
            int temp = arr[i];
            arr[i] = arr[(i-1)/2];
            arr[(i-1)/2] = temp;
            i = (i-1)/2;
        }
    }
    
    public int extractMax(int[] arr) {
        int n = arr.length;
        if (n == 0) {
            return -1; // 堆为空
        }
        
        int max = arr[0]; // 最大元素为根节点
        arr[0] = arr[n-1]; // 将最后一个元素移到根节点
        heapifyUtil(arr, n-1, 0); // 从根节点开始向下调整
        
        return max;
    }
}

相关推荐
岁忧2 小时前
(nice!!!)(LeetCode 每日一题) 679. 24 点游戏 (深度优先搜索)
java·c++·leetcode·游戏·go·深度优先
四维碎片3 小时前
【Qt】线程池与全局信号实现异步协作
开发语言·qt·ui·visual studio
IT码农-爱吃辣条4 小时前
Three.js 初级教程大全
开发语言·javascript·three.js
☺����4 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
月盈缺4 小时前
学习嵌入式的第二十二天——数据结构——双向链表
数据结构·学习·链表
猿究院--王升4 小时前
jvm三色标记
java·jvm·算法
染翰4 小时前
lua入门以及在Redis中的应用
开发语言·redis·lua
王者鳜錸5 小时前
PYTHON让繁琐的工作自动化-函数
开发语言·python·自动化
妮妮学代码5 小时前
c#:TCP服务端管理类
java·tcp/ip·c#
兔老大RabbitMQ5 小时前
git pull origin master失败
java·开发语言·git