机器学习-有监督学习

有监督学习是机器学习的一种主要范式,其基本思想是从有标签的训练数据中学习输入和输出之间的关系,然后利用学习到的模型对新的输入进行预测或分类。

有监督学习的过程如下:

  1. 准备数据:首先,需要准备一组有标签的训练数据,其中包括输入(特征)和相应的输出(标签)。

  2. 选择模型:根据问题的性质选择合适的模型,例如线性回归、决策树、支持向量机等。

  3. 训练模型:使用训练数据来训练模型,即学习输入和输出之间的关系。模型会根据输入特征和对应的输出标签进行调整,使得模型能够尽可能地准确预测输出。

  4. 评估模型:使用另外一部分数据(通常称为验证集)来评估模型的性能,以确保模型具有良好的泛化能力,即在未见过的数据上也能表现良好。

  5. 预测:一旦模型训练完成并通过验证,就可以用它来对新的输入进行预测或分类了。

举个例子,假设我们要通过房屋的面积和位置来预测房价。我们可以收集一些已知房价的数据,包括房屋的面积、位置和对应的房价(标签)。然后,我们选择一个适当的模型(比如线性回归模型),用这些数据来训练模型,使得模型能够准确地预测房价。最后,我们就可以使用这个训练好的模型来预测新房屋的价格了。

总的来说,有监督学习算法通过学习输入和输出之间的关系来建立预测模型,是解决许多实际问题的重要方法之一。

相关推荐
深鱼~6 小时前
构建高效Transformer模型:ops-transformer算子使用手册
人工智能·深度学习·transformer·cann
人工智能AI技术6 小时前
AI编程工具测评:2026年该选Copilot、Cursor还是免费开源方案?
人工智能
心疼你的一切6 小时前
药物发现革命:CANN加速的AI分子生成与优化系统
数据仓库·人工智能·深度学习·aigc·cann
jackzzb1234566 小时前
2026年专注大模型应用的AI创业公司盘点与选择指南
大数据·人工智能
Java后端的Ai之路6 小时前
【RAG技术】- RAG系统调优手段之GraphRAG(全局视野)
人工智能·知识库·调优·rag·graphrag
chian-ocean6 小时前
生产级部署:基于 `ops-transformer` 构建高性能多模态推理服务
人工智能·深度学习·transformer
麦兜*6 小时前
全面掌握深度学习部署技术:基于TensorRT与Triton Inference Server实现高性能模型推理和自动化Pipeline的企业级落地实践指南
人工智能·深度学习·自动化
深鱼~6 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Bingo6543216 小时前
有哪些专注大模型应用的AI创业公司值得选择?
大数据·人工智能
哈__6 小时前
CANN加速视觉Transformer推理:注意力机制优化与高效计算策略
人工智能·深度学习·transformer