机器学习-有监督学习

有监督学习是机器学习的一种主要范式,其基本思想是从有标签的训练数据中学习输入和输出之间的关系,然后利用学习到的模型对新的输入进行预测或分类。

有监督学习的过程如下:

  1. 准备数据:首先,需要准备一组有标签的训练数据,其中包括输入(特征)和相应的输出(标签)。

  2. 选择模型:根据问题的性质选择合适的模型,例如线性回归、决策树、支持向量机等。

  3. 训练模型:使用训练数据来训练模型,即学习输入和输出之间的关系。模型会根据输入特征和对应的输出标签进行调整,使得模型能够尽可能地准确预测输出。

  4. 评估模型:使用另外一部分数据(通常称为验证集)来评估模型的性能,以确保模型具有良好的泛化能力,即在未见过的数据上也能表现良好。

  5. 预测:一旦模型训练完成并通过验证,就可以用它来对新的输入进行预测或分类了。

举个例子,假设我们要通过房屋的面积和位置来预测房价。我们可以收集一些已知房价的数据,包括房屋的面积、位置和对应的房价(标签)。然后,我们选择一个适当的模型(比如线性回归模型),用这些数据来训练模型,使得模型能够准确地预测房价。最后,我们就可以使用这个训练好的模型来预测新房屋的价格了。

总的来说,有监督学习算法通过学习输入和输出之间的关系来建立预测模型,是解决许多实际问题的重要方法之一。

相关推荐
菠菠萝宝1 分钟前
【Java手搓RAGFlow】-9- RAG对话实现
java·开发语言·人工智能·llm·jenkins·openai
小猪佩奇TONY17 分钟前
OpenGL-ES 学习(16) ----Pixel Buffer Object
服务器·学习·elasticsearch
石像鬼₧魂石28 分钟前
有哪些常见的字典可以用于Hydra的密码破解?
linux·学习·ssh
大佬,救命!!!43 分钟前
最新的python3.14版本下仿真环境配置深度学习机器学习相关
开发语言·人工智能·python·深度学习·机器学习·学习笔记·环境配置
工业机器视觉设计和实现1 小时前
用caffe做个人脸识别
人工智能·深度学习·caffe
执笔论英雄1 小时前
【大模型训练】deepseek MTPpp阶段的输入数据哪里来
学习
paperxie_xiexuo1 小时前
从研究问题到分析初稿:深度解析PaperXie AI科研工具中数据分析模块在学术写作场景下的辅助逻辑与技术实现路径
人工智能·数据挖掘·数据分析
T***u3331 小时前
Java机器学习框架
java·开发语言·机器学习
一水鉴天1 小时前
整体设计 定稿 之9 拼语言工具设计之前 的 备忘录仪表盘(CodeBuddy)
人工智能·架构·公共逻辑
vvoennvv1 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·神经网络·机器学习·cnn·gru·tensorflow