机器学习-有监督学习

有监督学习是机器学习的一种主要范式,其基本思想是从有标签的训练数据中学习输入和输出之间的关系,然后利用学习到的模型对新的输入进行预测或分类。

有监督学习的过程如下:

  1. 准备数据:首先,需要准备一组有标签的训练数据,其中包括输入(特征)和相应的输出(标签)。

  2. 选择模型:根据问题的性质选择合适的模型,例如线性回归、决策树、支持向量机等。

  3. 训练模型:使用训练数据来训练模型,即学习输入和输出之间的关系。模型会根据输入特征和对应的输出标签进行调整,使得模型能够尽可能地准确预测输出。

  4. 评估模型:使用另外一部分数据(通常称为验证集)来评估模型的性能,以确保模型具有良好的泛化能力,即在未见过的数据上也能表现良好。

  5. 预测:一旦模型训练完成并通过验证,就可以用它来对新的输入进行预测或分类了。

举个例子,假设我们要通过房屋的面积和位置来预测房价。我们可以收集一些已知房价的数据,包括房屋的面积、位置和对应的房价(标签)。然后,我们选择一个适当的模型(比如线性回归模型),用这些数据来训练模型,使得模型能够准确地预测房价。最后,我们就可以使用这个训练好的模型来预测新房屋的价格了。

总的来说,有监督学习算法通过学习输入和输出之间的关系来建立预测模型,是解决许多实际问题的重要方法之一。

相关推荐
没有梦想的咸鱼185-1037-16632 分钟前
SCI论文写作:从实验设计到发表(选题、文献调研、实验设计、数据分析、论文结构及语言规范)
人工智能·信息可视化·数据分析·ai写作
AI新兵8 分钟前
深度学习基础:从原理到实践——第二章神经网络(中)
人工智能·深度学习·神经网络
pearbing15 分钟前
B站排名优化:知识、娱乐、生活类内容的差异化实操策略
人工智能·微信·小程序·生活·娱乐
leijiwen16 分钟前
AI × RWA 本地生活品牌数字资产管理与增长平台
人工智能·web3·区块链
却道天凉_好个秋25 分钟前
卷积神经网络CNN(四):池化技术
人工智能·神经网络·cnn·池化
ARM+FPGA+AI工业主板定制专家37 分钟前
基于Jetson+FPGA+GMSL+AI的自动驾驶数据采集解决方案
人工智能·机器学习·自动驾驶
Test.X40 分钟前
学习16天:pytest学习
学习·pytest
XISHI_TIANLAN1 小时前
【多模态学习】Q&A6: 什么是MOE架构?Router Z Loss函数是指什么?负载均衡损失(Load Balancing Loss)又是什么?
学习·算法·语言模型
聊聊MES那点事1 小时前
汽车零部件MES系统实施案例介绍
人工智能·信息可视化·汽车·数据可视化
Diligence8151 小时前
计算机网络学习总结(二)应用层
学习·计算机网络