机器学习-有监督学习

有监督学习是机器学习的一种主要范式,其基本思想是从有标签的训练数据中学习输入和输出之间的关系,然后利用学习到的模型对新的输入进行预测或分类。

有监督学习的过程如下:

  1. 准备数据:首先,需要准备一组有标签的训练数据,其中包括输入(特征)和相应的输出(标签)。

  2. 选择模型:根据问题的性质选择合适的模型,例如线性回归、决策树、支持向量机等。

  3. 训练模型:使用训练数据来训练模型,即学习输入和输出之间的关系。模型会根据输入特征和对应的输出标签进行调整,使得模型能够尽可能地准确预测输出。

  4. 评估模型:使用另外一部分数据(通常称为验证集)来评估模型的性能,以确保模型具有良好的泛化能力,即在未见过的数据上也能表现良好。

  5. 预测:一旦模型训练完成并通过验证,就可以用它来对新的输入进行预测或分类了。

举个例子,假设我们要通过房屋的面积和位置来预测房价。我们可以收集一些已知房价的数据,包括房屋的面积、位置和对应的房价(标签)。然后,我们选择一个适当的模型(比如线性回归模型),用这些数据来训练模型,使得模型能够准确地预测房价。最后,我们就可以使用这个训练好的模型来预测新房屋的价格了。

总的来说,有监督学习算法通过学习输入和输出之间的关系来建立预测模型,是解决许多实际问题的重要方法之一。

相关推荐
信息快讯3 分钟前
【人工智能与数据驱动方法加速金属材料设计与应用】
人工智能·材料工程·金属材料·结构材料设计
c#上位机19 分钟前
halcon图像增强——emphasize
图像处理·人工智能·计算机视觉·c#·上位机·halcon
老蒋新思维31 分钟前
创客匠人峰会洞察:私域 AI 化重塑知识变现 —— 创始人 IP 的私域增长新引擎
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人
2401_8345170742 分钟前
AD学习笔记-26 Active Routing
笔记·学习
知行力1 小时前
【GitHub每日速递 20251209】Next.js融合AI,让draw.io图表创建、修改、可视化全靠自然语言!
javascript·人工智能·github
QiZhang | UESTC1 小时前
学习日记day45
学习
冷yan~1 小时前
OpenAI Codex CLI 完全指南:AI 编程助手的终端革命
人工智能·ai·ai编程
菜鸟‍1 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习
知识分享小能手1 小时前
CentOS Stream 9入门学习教程,从入门到精通,CentOS Stream 9 配置网络功能 —语法详解与实战案例(10)
网络·学习·centos
AKAMAI1 小时前
无服务器计算架构的优势
人工智能·云计算