C++ Opencv之图像数据拷贝分析

测试代码C++

cpp 复制代码
#include<iostream>
#include<opencv2/opencv.hpp>

void main()
{
	//cv::Mat A = (cv::Mat_<float>(3, 3) << 1, 0, 0, 0, 1, 1, 0, 0, 1);
	
	int wh = 1200;
	cv::Mat A = cv::Mat(wh, wh, CV_8UC1, cv::Scalar::all(128));
	

	cv::Mat B, C;

#if 1
	auto t0 = cv::getTickCount();
	B = A;
	B.at<float>(1, 1) = 8;
	auto t1 = cv::getTickCount();
	auto t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("直接赋值耗时:%.2f ms\n", t01);


#endif

	t0 = cv::getTickCount();
	C = A.clone();
	C.at<float>(1, 1) = 8;
	t1 = cv::getTickCount();
	t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("图像clone耗时:%.2f ms\n", t01);

	t0 = cv::getTickCount();
	//unsigned char* buffer = new unsigned char[A.rows * A.cols * A.channels()];
	//针对8通道可以,float或者double另行讨论
	cv::Mat D = cv::Mat(A.size(), A.type());
	memcpy(D.data, A.data, A.rows * A.cols * A.channels());
	
	t1 = cv::getTickCount();
	t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("memcpy耗时:%.2f ms\n", t01);

	std::cout << "go!\n";


}
  • 输出:
bash 复制代码
直接赋值耗时:0.00 ms
图像clone耗时:0.76 ms
memcpy耗时:0.51 ms
  • 若把图像大小设为3000,则 差距就很明显了
cpp 复制代码
int wh = 3000;
cv::Mat A = cv::Mat(wh, wh, CV_8UC1, cv::Scalar::all(128));
  • 结果如下:
bash 复制代码
直接赋值耗时:0.00 ms
图像clone耗时:4.84 ms
memcpy耗时:2.53 ms
相关推荐
Mr数据杨35 分钟前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-1593043398636 分钟前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
zhz52142 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师2 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
武科大许志伟2 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技2 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco2 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
小oo呆3 小时前
【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型
人工智能·自然语言处理
开放知识图谱3 小时前
论文浅尝 | HOLMES:面向大语言模型多跳问答的超关系知识图谱方法(ACL2024)
人工智能·语言模型·自然语言处理·知识图谱
weixin_444579303 小时前
基于Llama3的开发应用(二):大语言模型的工业部署
人工智能·语言模型·自然语言处理