C++ Opencv之图像数据拷贝分析

测试代码C++

cpp 复制代码
#include<iostream>
#include<opencv2/opencv.hpp>

void main()
{
	//cv::Mat A = (cv::Mat_<float>(3, 3) << 1, 0, 0, 0, 1, 1, 0, 0, 1);
	
	int wh = 1200;
	cv::Mat A = cv::Mat(wh, wh, CV_8UC1, cv::Scalar::all(128));
	

	cv::Mat B, C;

#if 1
	auto t0 = cv::getTickCount();
	B = A;
	B.at<float>(1, 1) = 8;
	auto t1 = cv::getTickCount();
	auto t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("直接赋值耗时:%.2f ms\n", t01);


#endif

	t0 = cv::getTickCount();
	C = A.clone();
	C.at<float>(1, 1) = 8;
	t1 = cv::getTickCount();
	t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("图像clone耗时:%.2f ms\n", t01);

	t0 = cv::getTickCount();
	//unsigned char* buffer = new unsigned char[A.rows * A.cols * A.channels()];
	//针对8通道可以,float或者double另行讨论
	cv::Mat D = cv::Mat(A.size(), A.type());
	memcpy(D.data, A.data, A.rows * A.cols * A.channels());
	
	t1 = cv::getTickCount();
	t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("memcpy耗时:%.2f ms\n", t01);

	std::cout << "go!\n";


}
  • 输出:
bash 复制代码
直接赋值耗时:0.00 ms
图像clone耗时:0.76 ms
memcpy耗时:0.51 ms
  • 若把图像大小设为3000,则 差距就很明显了
cpp 复制代码
int wh = 3000;
cv::Mat A = cv::Mat(wh, wh, CV_8UC1, cv::Scalar::all(128));
  • 结果如下:
bash 复制代码
直接赋值耗时:0.00 ms
图像clone耗时:4.84 ms
memcpy耗时:2.53 ms
相关推荐
AI_Auto6 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
一只乔哇噻6 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood6 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头6 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
Dcs7 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding7 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊7 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
社会零时工8 小时前
NVIDIA Jetson开发板使用记录——开发环境搭建
qt·opencv·nvidia
学生高德8 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算8 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘