C++ Opencv之图像数据拷贝分析

测试代码C++

cpp 复制代码
#include<iostream>
#include<opencv2/opencv.hpp>

void main()
{
	//cv::Mat A = (cv::Mat_<float>(3, 3) << 1, 0, 0, 0, 1, 1, 0, 0, 1);
	
	int wh = 1200;
	cv::Mat A = cv::Mat(wh, wh, CV_8UC1, cv::Scalar::all(128));
	

	cv::Mat B, C;

#if 1
	auto t0 = cv::getTickCount();
	B = A;
	B.at<float>(1, 1) = 8;
	auto t1 = cv::getTickCount();
	auto t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("直接赋值耗时:%.2f ms\n", t01);


#endif

	t0 = cv::getTickCount();
	C = A.clone();
	C.at<float>(1, 1) = 8;
	t1 = cv::getTickCount();
	t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("图像clone耗时:%.2f ms\n", t01);

	t0 = cv::getTickCount();
	//unsigned char* buffer = new unsigned char[A.rows * A.cols * A.channels()];
	//针对8通道可以,float或者double另行讨论
	cv::Mat D = cv::Mat(A.size(), A.type());
	memcpy(D.data, A.data, A.rows * A.cols * A.channels());
	
	t1 = cv::getTickCount();
	t01 = float(t1 - t0) / cv::getTickFrequency() * 1000;
	std::cout << cv::format("memcpy耗时:%.2f ms\n", t01);

	std::cout << "go!\n";


}
  • 输出:
bash 复制代码
直接赋值耗时:0.00 ms
图像clone耗时:0.76 ms
memcpy耗时:0.51 ms
  • 若把图像大小设为3000,则 差距就很明显了
cpp 复制代码
int wh = 3000;
cv::Mat A = cv::Mat(wh, wh, CV_8UC1, cv::Scalar::all(128));
  • 结果如下:
bash 复制代码
直接赋值耗时:0.00 ms
图像clone耗时:4.84 ms
memcpy耗时:2.53 ms
相关推荐
初恋叫萱萱4 小时前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能
不爱学英文的码字机器4 小时前
深度解读CANN生态核心仓库——catlass,打造高效可扩展的分类器技术底座
人工智能·cann
Kiyra4 小时前
作为后端开发你不得不知的 AI 知识——RAG
人工智能·语言模型
共享家95274 小时前
Vibe Coding 与 LangChain、LangGraph 的协同进化
人工智能
dvlinker4 小时前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能
2的n次方_4 小时前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
熊猫_豆豆4 小时前
YOLOP车道检测
人工智能·python·算法
nimadan124 小时前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
qq_12498707534 小时前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.4 小时前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能