【鱼眼+普通相机】相机标定

一、简介

本文提供了鱼眼及普通相机的标定python版源码,调用opencv的接口,原理为张正友标定法。这里不过多赘述,话不多说无套路直接上源码,亲测有效,搬走即用。

注:

  1. 需准备一个标定版,在此网站下载打印出来即可;
  2. 例如12x8的棋盘格内角点为11x7.

二 、源码

2.1 鱼眼相机标定

python 复制代码
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~
鱼眼相机标定
~~~~~~~~~~~~~~~~~~~~~~~~~~

用法:
    python calibrate_camera.py \
        -i 0 \
        -grid 9x6 \
        -out fisheye.yaml \
        -framestep 20 \
        --resolution 640x480
        --fisheye
"""
import argparse
import os
import numpy as np
import cv2


# 将相机参数文件保存到此目录
TARGET_DIR = os.path.join(os.getcwd(), "yaml")

# 默认参数文件
DEFAULT_PARAM_FILE = os.path.join(TARGET_DIR, "calib.yaml")


def main():
    global gray
    parser = argparse.ArgumentParser()

    # 输入视频流
    parser.add_argument("-i", "--input", type=int, default=0,
                        help="输入相机设备")

    # 棋盘格大小
    parser.add_argument("-grid", "--grid", default="10x7",
                        help="标定棋盘格的大小")

    parser.add_argument("-r", "--resolution", default="640x480",
                        help="相机图像的分辨率")

    parser.add_argument("-framestep", type=int, default=20,
                        help="在视频中使用每第n帧")

    parser.add_argument("-o", "--output", default=DEFAULT_PARAM_FILE,
                        help="输出yaml文件的路径")


    args = parser.parse_args()

    if not os.path.exists(TARGET_DIR):
        os.mkdir(TARGET_DIR)

    text1 = "按下 c 进行标定"
    text2 = "按下 q 退出"
    text3 = "设备: {}".format(args.input)
    font = cv2.FONT_HERSHEY_SIMPLEX
    fontscale = 0.6

    resolution_str = args.resolution.split("x")
    W = int(resolution_str[0])
    H = int(resolution_str[1])
    grid_size = tuple(int(x) for x in args.grid.split("x"))
    grid_points = np.zeros((1, np.prod(grid_size), 3), np.float32)
    grid_points[0, :, :2] = np.indices(grid_size).T.reshape(-1, 2)

    objpoints = []  # 真实世界空间中的3D点
    imgpoints = []  # 图像平面中的2D点

    device = args.input
    cap = cv2.VideoCapture(device)  # 打开设备
    # 设置分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, W)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H)
    if cap is None or not cap.isOpened():
        print("无法打开设备")
        return

    quit = False
    do_calib = False
    i = -1
    while True:
        i += 1
        _r, img = cap.read()
        img= cv2.resize(img, (W, H))
        if i % args.framestep != 0:
            continue

        print("在第 " + str(i) + " 帧中寻找棋盘格角点...")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        found, corners = cv2.findChessboardCorners(
            gray,
            grid_size,
            cv2.CALIB_CB_ADAPTIVE_THRESH +
            cv2.CALIB_CB_NORMALIZE_IMAGE +
            cv2.CALIB_CB_FILTER_QUADS
        )
        if found:
            term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.01)
            cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
            print("OK")
            imgpoints.append(corners)
            objpoints.append(grid_points)
            cv2.drawChessboardCorners(img, grid_size, corners, found)

        cv2.putText(img, text1, (20, 70), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text2, (20, 110), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text3, (20, 30), font, fontscale, (255, 200, 0), 2)
        cv2.imshow("corners", img)
        key = cv2.waitKey(1) & 0xFF
        if key == ord("c"):
            print("\n进行标定...\n")
            N_OK = len(objpoints)
            if N_OK < 12:
                print("检测到的角点少于12个 (%d),标定失败" %(N_OK))
                continue
            else:
                do_calib = True
                break

        elif key == ord("q"):
            quit = True
            break

    if quit:
        print("标定已退出。")
        cap.release()
        cv2.destroyAllWindows()

    if do_calib:
        N_OK = len(objpoints)
        K = np.zeros((3, 3))
        D = np.zeros((4, 1))
        rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
        tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
        calibration_flags = (cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC +
                             cv2.fisheye.CALIB_CHECK_COND +
                             cv2.fisheye.CALIB_FIX_SKEW)
       
        ret, mtx, dist, rvecs, tvecs = cv2.fisheye.calibrate(
                objpoints,
                imgpoints,
                (W, H),
                K,
                D,
                rvecs,
                tvecs,
                calibration_flags,
                (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
            )
            

        if ret:
            fs = cv2.FileStorage(args.output, cv2.FILE_STORAGE_WRITE)
            fs.write("resolution", np.int32([W, H]))
            fs.write("camera_matrix", mtx)
            fs.write("dist_coeffs", dist)
            fs.release()
            print("相机数据保存成功")
            cv2.putText(img, "SUCCESS!", (220, 240), font, 2, (0, 0, 255), 2)

        else:
            cv2.putText(img, "FAILED!", (220, 240), font, 2, (0, 0, 255), 2)

        cv2.imshow("corners", img)
        cv2.waitKey(0)


if __name__ == "__main__":
    main()

2.2 普通工业相机标定

python 复制代码
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~
普通工业相机标定
~~~~~~~~~~~~~~~~~~~~~~~~~~
用法:
    python calibrate_camera.py \
        -i 0 \
        -grid 7x10 \
        -out calib.yaml \
        -framestep 20 \
        --resolution 640x480
"""
import argparse
import os
import numpy as np
import cv2

# 将相机参数文件保存到此目录
TARGET_DIR = os.path.join(os.getcwd(), "calib_yaml")

# 默认参数文件
DEFAULT_PARAM_FILE = os.path.join(TARGET_DIR, "calib.yaml")


def main():
    global gray
    parser = argparse.ArgumentParser()  # 创建解析器

    # 输入视频流
    parser.add_argument("-i", "--input", default="0",
                        help="输入相机设备")    # type=int,

    # 棋盘格大小
    parser.add_argument("-grid", "--grid", default="11x8",
                        help="标定棋盘格的大小")

    parser.add_argument("-r", "--resolution", default="640x480",
                        help="相机图像的分辨率")

    parser.add_argument("-framestep", type=int, default=20,
                        help="在视频中使用每第n帧")

    parser.add_argument("-o", "--output", default=DEFAULT_PARAM_FILE,
                        help="输出yaml文件的路径")

    args = parser.parse_args()

    if not os.path.exists(TARGET_DIR):
        os.mkdir(TARGET_DIR)

    text1 = "Press c for calibration"
    text2 = "Press q to exit"
    text3 = "device: {}".format(args.input)
    font = cv2.FONT_HERSHEY_SIMPLEX
    fontscale = 0.6

    resolution_str = args.resolution.split("x")  # 分辨率
    W = int(resolution_str[0])
    H = int(resolution_str[1])
    grid_size = tuple(int(x) for x in args.grid.split("x"))  # 棋盘格大小
    grid_points = np.zeros((1, np.prod(grid_size), 3), np.float32)  # 3D点
    grid_points[0, :, :2] = np.indices(grid_size).T.reshape(-1, 2)  # 2D点

    objpoints = []  # 真实世界空间中的3D点
    imgpoints = []  # 图像平面中的2D点

    device = args.input  # 设备
    cap = cv2.VideoCapture(device)  # 打开设备
    # 设置分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, W)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H)
    if cap is None or not cap.isOpened():
        print("无法打开设备")
        return

    quit = False
    do_calib = False
    i = -1
    while True:
        i += 1
        _r, img = cap.read()
        img= cv2.resize(img, (W, H))
        if i % args.framestep != 0:
            continue

        print("在第 " + str(i) + " 帧中寻找棋盘格角点...")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换为灰度图像
        found, corners = cv2.findChessboardCorners(  # 检测棋盘格角点
            gray,
            grid_size,
            cv2.CALIB_CB_ADAPTIVE_THRESH +
            cv2.CALIB_CB_NORMALIZE_IMAGE +
            cv2.CALIB_CB_FILTER_QUADS
        )
        if found:  # 如果找到棋盘格角点
            term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.01)  # 终止条件
            cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)  # 亚像素级角点检测
            print("OK")
            imgpoints.append(corners)  # 2D点
            objpoints.append(grid_points)  # 3D点
            cv2.drawChessboardCorners(img, grid_size, corners, found)  # 绘制棋盘格角点

        cv2.putText(img, text1, (20, 70), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text2, (20, 110), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text3, (20, 30), font, fontscale, (255, 200, 0), 2)
        cv2.imshow("corners", img)
        key = cv2.waitKey(1) & 0xFF
        if key == ord("c"):
            print("\n进行标定...\n")
            N_OK = len(objpoints)  # 有效的标定图像数量
            if N_OK < 12:
                print("检测到的角点少于12个 (%d),标定失败" % (N_OK))
                continue
            else:
                do_calib = True
                break

        elif key == ord("q"):
            quit = True
            break

    if quit:
        print("标定已退出。")
        cap.release()
        cv2.destroyAllWindows()

    if do_calib:
        N_OK = len(objpoints)
        K = np.zeros((3, 3))
        D = np.zeros((4, 1))
        rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
        tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]

        ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
            objpoints,
            imgpoints,
            gray.shape[::-1],
            None,
            None)

        if ret:
            fs = cv2.FileStorage(args.output, cv2.FILE_STORAGE_WRITE)
            fs.write("resolution", np.int32([W, H]))
            fs.write("camera_matrix", mtx)  # 内参矩阵
            fs.write("dist_coeffs", dist)  # 畸变系数
            # print("rvecs:", rvecs)  # 旋转向量
            # print("tvecs:", rvecs)  # 平移向量
            fs.release()
            print("相机数据保存成功")
            cv2.putText(img, "SUCCESS!", (220, 240), font, 2, (0, 0, 255), 2)
        else:
            cv2.putText(img, "FAILED!", (220, 240), font, 2, (0, 0, 255), 2)

        cv2.imshow("corners", img)
        cv2.waitKey(0)


if __name__ == "__main__":
    main()
相关推荐
2201_754918417 小时前
OpenCV--模板匹配
人工智能·opencv·计算机视觉
QQ_77813297410 小时前
基于OpenCV的指纹验证:从原理到实战的深度解析
opencv
bjxiaxueliang10 小时前
一文详解OpenCV环境搭建:Ubuntu20.4使用CLion配置OpenCV开发环境
人工智能·opencv·计算机视觉
断眉的派大星11 小时前
用opencv校正图片的方向
人工智能·opencv·计算机视觉
闭月之泪舞14 小时前
OpenCv高阶(一)——图像金字塔(上采样、下采样)
人工智能·opencv·计算机视觉
呼呼~²⁰¹⁷15 小时前
opencv无法设置禁用RGB转换问题
人工智能·opencv·计算机视觉
闭月之泪舞16 小时前
OpenCv高阶(二)——图像的掩膜
人工智能·opencv·计算机视觉
bjxiaxueliang17 小时前
一文详解OpenCV环境搭建:Windows使用CLion配置OpenCV开发环境
人工智能·windows·opencv
程序员Linc19 小时前
RK3588芯片NPU的使用:Windows11 Docker中运行MobileNet模型以及部署到开发板进行目标检测
目标检测·docker·容器·rk3588·rknn-toolkit2·mobilenet
jndingxin20 小时前
OpenCV 图形API(22)矩阵操作
人工智能·opencv