【鱼眼+普通相机】相机标定

一、简介

本文提供了鱼眼及普通相机的标定python版源码,调用opencv的接口,原理为张正友标定法。这里不过多赘述,话不多说无套路直接上源码,亲测有效,搬走即用。

注:

  1. 需准备一个标定版,在此网站下载打印出来即可;
  2. 例如12x8的棋盘格内角点为11x7.

二 、源码

2.1 鱼眼相机标定

python 复制代码
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~
鱼眼相机标定
~~~~~~~~~~~~~~~~~~~~~~~~~~

用法:
    python calibrate_camera.py \
        -i 0 \
        -grid 9x6 \
        -out fisheye.yaml \
        -framestep 20 \
        --resolution 640x480
        --fisheye
"""
import argparse
import os
import numpy as np
import cv2


# 将相机参数文件保存到此目录
TARGET_DIR = os.path.join(os.getcwd(), "yaml")

# 默认参数文件
DEFAULT_PARAM_FILE = os.path.join(TARGET_DIR, "calib.yaml")


def main():
    global gray
    parser = argparse.ArgumentParser()

    # 输入视频流
    parser.add_argument("-i", "--input", type=int, default=0,
                        help="输入相机设备")

    # 棋盘格大小
    parser.add_argument("-grid", "--grid", default="10x7",
                        help="标定棋盘格的大小")

    parser.add_argument("-r", "--resolution", default="640x480",
                        help="相机图像的分辨率")

    parser.add_argument("-framestep", type=int, default=20,
                        help="在视频中使用每第n帧")

    parser.add_argument("-o", "--output", default=DEFAULT_PARAM_FILE,
                        help="输出yaml文件的路径")


    args = parser.parse_args()

    if not os.path.exists(TARGET_DIR):
        os.mkdir(TARGET_DIR)

    text1 = "按下 c 进行标定"
    text2 = "按下 q 退出"
    text3 = "设备: {}".format(args.input)
    font = cv2.FONT_HERSHEY_SIMPLEX
    fontscale = 0.6

    resolution_str = args.resolution.split("x")
    W = int(resolution_str[0])
    H = int(resolution_str[1])
    grid_size = tuple(int(x) for x in args.grid.split("x"))
    grid_points = np.zeros((1, np.prod(grid_size), 3), np.float32)
    grid_points[0, :, :2] = np.indices(grid_size).T.reshape(-1, 2)

    objpoints = []  # 真实世界空间中的3D点
    imgpoints = []  # 图像平面中的2D点

    device = args.input
    cap = cv2.VideoCapture(device)  # 打开设备
    # 设置分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, W)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H)
    if cap is None or not cap.isOpened():
        print("无法打开设备")
        return

    quit = False
    do_calib = False
    i = -1
    while True:
        i += 1
        _r, img = cap.read()
        img= cv2.resize(img, (W, H))
        if i % args.framestep != 0:
            continue

        print("在第 " + str(i) + " 帧中寻找棋盘格角点...")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        found, corners = cv2.findChessboardCorners(
            gray,
            grid_size,
            cv2.CALIB_CB_ADAPTIVE_THRESH +
            cv2.CALIB_CB_NORMALIZE_IMAGE +
            cv2.CALIB_CB_FILTER_QUADS
        )
        if found:
            term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.01)
            cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
            print("OK")
            imgpoints.append(corners)
            objpoints.append(grid_points)
            cv2.drawChessboardCorners(img, grid_size, corners, found)

        cv2.putText(img, text1, (20, 70), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text2, (20, 110), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text3, (20, 30), font, fontscale, (255, 200, 0), 2)
        cv2.imshow("corners", img)
        key = cv2.waitKey(1) & 0xFF
        if key == ord("c"):
            print("\n进行标定...\n")
            N_OK = len(objpoints)
            if N_OK < 12:
                print("检测到的角点少于12个 (%d),标定失败" %(N_OK))
                continue
            else:
                do_calib = True
                break

        elif key == ord("q"):
            quit = True
            break

    if quit:
        print("标定已退出。")
        cap.release()
        cv2.destroyAllWindows()

    if do_calib:
        N_OK = len(objpoints)
        K = np.zeros((3, 3))
        D = np.zeros((4, 1))
        rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
        tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
        calibration_flags = (cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC +
                             cv2.fisheye.CALIB_CHECK_COND +
                             cv2.fisheye.CALIB_FIX_SKEW)
       
        ret, mtx, dist, rvecs, tvecs = cv2.fisheye.calibrate(
                objpoints,
                imgpoints,
                (W, H),
                K,
                D,
                rvecs,
                tvecs,
                calibration_flags,
                (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
            )
            

        if ret:
            fs = cv2.FileStorage(args.output, cv2.FILE_STORAGE_WRITE)
            fs.write("resolution", np.int32([W, H]))
            fs.write("camera_matrix", mtx)
            fs.write("dist_coeffs", dist)
            fs.release()
            print("相机数据保存成功")
            cv2.putText(img, "SUCCESS!", (220, 240), font, 2, (0, 0, 255), 2)

        else:
            cv2.putText(img, "FAILED!", (220, 240), font, 2, (0, 0, 255), 2)

        cv2.imshow("corners", img)
        cv2.waitKey(0)


if __name__ == "__main__":
    main()

2.2 普通工业相机标定

python 复制代码
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~
普通工业相机标定
~~~~~~~~~~~~~~~~~~~~~~~~~~
用法:
    python calibrate_camera.py \
        -i 0 \
        -grid 7x10 \
        -out calib.yaml \
        -framestep 20 \
        --resolution 640x480
"""
import argparse
import os
import numpy as np
import cv2

# 将相机参数文件保存到此目录
TARGET_DIR = os.path.join(os.getcwd(), "calib_yaml")

# 默认参数文件
DEFAULT_PARAM_FILE = os.path.join(TARGET_DIR, "calib.yaml")


def main():
    global gray
    parser = argparse.ArgumentParser()  # 创建解析器

    # 输入视频流
    parser.add_argument("-i", "--input", default="0",
                        help="输入相机设备")    # type=int,

    # 棋盘格大小
    parser.add_argument("-grid", "--grid", default="11x8",
                        help="标定棋盘格的大小")

    parser.add_argument("-r", "--resolution", default="640x480",
                        help="相机图像的分辨率")

    parser.add_argument("-framestep", type=int, default=20,
                        help="在视频中使用每第n帧")

    parser.add_argument("-o", "--output", default=DEFAULT_PARAM_FILE,
                        help="输出yaml文件的路径")

    args = parser.parse_args()

    if not os.path.exists(TARGET_DIR):
        os.mkdir(TARGET_DIR)

    text1 = "Press c for calibration"
    text2 = "Press q to exit"
    text3 = "device: {}".format(args.input)
    font = cv2.FONT_HERSHEY_SIMPLEX
    fontscale = 0.6

    resolution_str = args.resolution.split("x")  # 分辨率
    W = int(resolution_str[0])
    H = int(resolution_str[1])
    grid_size = tuple(int(x) for x in args.grid.split("x"))  # 棋盘格大小
    grid_points = np.zeros((1, np.prod(grid_size), 3), np.float32)  # 3D点
    grid_points[0, :, :2] = np.indices(grid_size).T.reshape(-1, 2)  # 2D点

    objpoints = []  # 真实世界空间中的3D点
    imgpoints = []  # 图像平面中的2D点

    device = args.input  # 设备
    cap = cv2.VideoCapture(device)  # 打开设备
    # 设置分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, W)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H)
    if cap is None or not cap.isOpened():
        print("无法打开设备")
        return

    quit = False
    do_calib = False
    i = -1
    while True:
        i += 1
        _r, img = cap.read()
        img= cv2.resize(img, (W, H))
        if i % args.framestep != 0:
            continue

        print("在第 " + str(i) + " 帧中寻找棋盘格角点...")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换为灰度图像
        found, corners = cv2.findChessboardCorners(  # 检测棋盘格角点
            gray,
            grid_size,
            cv2.CALIB_CB_ADAPTIVE_THRESH +
            cv2.CALIB_CB_NORMALIZE_IMAGE +
            cv2.CALIB_CB_FILTER_QUADS
        )
        if found:  # 如果找到棋盘格角点
            term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.01)  # 终止条件
            cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)  # 亚像素级角点检测
            print("OK")
            imgpoints.append(corners)  # 2D点
            objpoints.append(grid_points)  # 3D点
            cv2.drawChessboardCorners(img, grid_size, corners, found)  # 绘制棋盘格角点

        cv2.putText(img, text1, (20, 70), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text2, (20, 110), font, fontscale, (255, 200, 0), 2)
        cv2.putText(img, text3, (20, 30), font, fontscale, (255, 200, 0), 2)
        cv2.imshow("corners", img)
        key = cv2.waitKey(1) & 0xFF
        if key == ord("c"):
            print("\n进行标定...\n")
            N_OK = len(objpoints)  # 有效的标定图像数量
            if N_OK < 12:
                print("检测到的角点少于12个 (%d),标定失败" % (N_OK))
                continue
            else:
                do_calib = True
                break

        elif key == ord("q"):
            quit = True
            break

    if quit:
        print("标定已退出。")
        cap.release()
        cv2.destroyAllWindows()

    if do_calib:
        N_OK = len(objpoints)
        K = np.zeros((3, 3))
        D = np.zeros((4, 1))
        rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
        tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]

        ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
            objpoints,
            imgpoints,
            gray.shape[::-1],
            None,
            None)

        if ret:
            fs = cv2.FileStorage(args.output, cv2.FILE_STORAGE_WRITE)
            fs.write("resolution", np.int32([W, H]))
            fs.write("camera_matrix", mtx)  # 内参矩阵
            fs.write("dist_coeffs", dist)  # 畸变系数
            # print("rvecs:", rvecs)  # 旋转向量
            # print("tvecs:", rvecs)  # 平移向量
            fs.release()
            print("相机数据保存成功")
            cv2.putText(img, "SUCCESS!", (220, 240), font, 2, (0, 0, 255), 2)
        else:
            cv2.putText(img, "FAILED!", (220, 240), font, 2, (0, 0, 255), 2)

        cv2.imshow("corners", img)
        cv2.waitKey(0)


if __name__ == "__main__":
    main()
相关推荐
mahtengdbb121 小时前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
却道天凉_好个秋1 天前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测
2501_941507941 天前
【目标检测】YOLO13-C3k2-PFDConv实现长颈鹿与斑马精准检测,完整教程与代码解析_1
人工智能·目标检测·目标跟踪
2501_942191771 天前
基于YOLOv5-RepHGNetV2的青椒目标检测方法研究原创
人工智能·yolo·目标检测
AI即插即用1 天前
即插即用系列 | CVPR 2025 MK-UNet: 多核深度可分离卷积,重新定义轻量级医学图像分割
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
2501_936146041 天前
柿子目标检测实战:YOLO11-HSFPN网络优化与性能分析
人工智能·目标检测·计算机视觉
AAD555888991 天前
【YOLO13项目实战】(5)镰刀目标检测与识别_C3k2_MBRConv3改进版
人工智能·目标检测·计算机视觉
wfeqhfxz25887821 天前
柿子与桃子目标检测识别-YOLO11-seg-HGNetV2改进实现
人工智能·目标检测·计算机视觉
ZCXZ12385296a1 天前
基于YOLOv10n-LSDECD的多类别交通目标检测系统_行人_自行车及交通信号灯识别
人工智能·yolo·目标检测
ASD123asfadxv1 天前
【医疗影像检测】VFNet模型在医疗器械目标检测中的应用与优化
人工智能·目标检测·计算机视觉