吴恩达 深度学习 神经网络 softmax adam 交叉验证

神经网络中的层 :输入层(layer 0)、隐藏层、卷积层(看情况用这个)、输出层。(参考文章

激活函数

隐藏层一般用relu函数;

输出层根据需要,二分类用sigmoid,多分类用softmax...前向传播算法参考文章
前向传播python实现
反向传播算法参考文章
用Tensorflow搭建一个神经网络参考文章

多分类问题

  1. softmax回归算法
    上图中 左二分类;右多分类

算法公式:

  1. Softmax回归算法的损失函数

Adam算法

参考文章

  • 在梯度下降中,学习率α控制着每一步的大小,如果α太小,可能会导致每一步走的太小,从而使梯度下降执行的太慢;相反,如果α太大,可能会导致每一步走的太大,从而使梯度下降来回振荡。
  • Adam算法可以自动调整α的大小 ,来保证可以用最短、最平滑的路径到达成本函数的最小值,通常它比梯度下降算法的速度要更快。
  • 在w、b参数每次改变都朝着大致相同的方向 移动时,adam算法会加大学习率α
  • 在w、b参数每次改变都不断来回振荡 时,adam算法会减小学习率α

交叉验证集


首先用训练集训练模型,之后用验证集选出最小的J,即相对最好的模型。
超参数d与 J t r a i n J_{train} Jtrain、 J c v J_{cv} Jcv的关系 :(即随着数据的增多, J t r a i n J_{train} Jtrain、 J c v J_{cv} Jcv的图)

λ如何影响 J t r a i n J_{train} Jtrain、 J c v J_{cv} Jcv :

通过最小 J c v J_{cv} Jcv,可以帮助选择一个合适的λ、d,从而帮助选择合适的模型
补充:下图中的式子为L2正则化(L1和L2正则化的区别

如何选择一个合适的λ:

从0开始,一次次的增大,找出最小的J。

学习曲线

通过画学习曲线这种可视化方式,来观察 J c v J_{cv} Jcv和 J t r a i n J_{train} Jtrain,并判断模型是否有高方差和高偏差。通过高方差、高偏差来改善模型算法。

(貌似一般不咋用,了解即可)参考文章

数据添加

  1. 加新数据
  2. 数据增强:通过旋转、缩小、方法、增加对比度、镜像变换等改变已有的训练样本,来获得一个全新的训练样本
    3. 数据合成:使用电脑上的字体,通过不同的对比度,颜色,字体进行截图得到。

迁移学习

参考文章1
参考文章2

举例:你要训练狗的图片,但你先用猫的图片进行训练模型,训练好的模型再用狗的进行训练微调模型。这就是迁移学习。

相关推荐
AI决策者洞察18 分钟前
Vibe Coding(氛围编程):把代码交给 AI 的瞬间,也交出了未来的维护权——慢慢学AI162
人工智能
德育处主任24 分钟前
终结开发混乱,用 Amazon Q 打造AI助手
人工智能·aigc
铁锚26 分钟前
在MAC环境中安装unsloth
人工智能·python·macos·语言模型
学行库小秘35 分钟前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
XIAO·宝1 小时前
机器学习--数据预处理
人工智能·机器学习·数据预处理
爱喝奶茶的企鹅1 小时前
Ethan独立开发新品速递 | 2025-08-21
人工智能
爱喝奶茶的企鹅1 小时前
Ethan开发者创新项目日报 | 2025-08-21
人工智能
算家计算1 小时前
字节跳动开源Seed-OSS-36B:512K上下文,代理与长上下文基准新SOTA
人工智能·开源·资讯
THMAIL1 小时前
大模型“知识”的外挂:RAG检索增强生成详解
人工智能
汀丶人工智能1 小时前
AI Compass前沿速览:DINOv3-Meta视觉基础模型、DeepSeek-V3.1、Qwen-Image、Seed-OSS、CombatVLA-3D动
人工智能