Python Pandas 数据分析快速入门

Python Pandas 数据分析快速入门

Pandas 是一个开源的 Python 数据分析库,它提供了高效的 DataFrame 结构来处理大型数据集,常用于数据清洗和分析工作。在本教程中,我们将介绍如何使用 Pandas 进行基本的数据分析操作,以及如何处理数据集。

目录

前置要求

在开始之前,确保你的开发环境已经准备好:

  • 操作系统:任何支持 Python 的操作系统(推荐使用 Linux 或 Windows)
  • Python 版本:Python 3.6 或更高版本
  • 开发工具:Jupyter Notebook 或其他 Python IDE

安装 Pandas

首先需要安装 Pandas 库。在你的 Python 环境中,可以通过 pip 命令轻松安装:

bash 复制代码
pip install pandas

数据载入与初步观察

Pandas 支持多种格式的数据输入,包括 CSV、Excel、SQL 数据库等。这里我们使用 CSV 文件作为例子:

python 复制代码
import pandas as pd

# 载入数据
df = pd.read_csv('example.csv')

# 查看数据的前五行
print(df.head())

# 显示数据框架的基本信息
df.info()

数据选择与过滤

在 Pandas 中,选择和过滤数据是常见的操作,可以用来查看或分析特定的数据子集:

python 复制代码
# 选择某一列
series = df['ColumnName']

# 条件过滤
filtered_data = df[df['Age'] > 30]

# 选择多列
multiple_columns = df[['Name', 'Age']]

数据清洗

数据清洗是数据分析中的重要步骤,包括处理缺失值、去除重复记录等:

python 复制代码
# 处理缺失值
df.fillna(0, inplace=True)

# 去除重复记录
df.drop_duplicates(inplace=True)

数据统计与聚合

Pandas 提供了丰富的方法进行数据统计和聚合操作:

python 复制代码
# 描述性统计
print(df.describe())

# 求平均值
mean_value = df['Salary'].mean()

# 数据聚合
grouped_data = df.groupby('Department').sum()

数据可视化

使用 Pandas 的绘图功能,可以直观地展示数据的分布和关系:

python 复制代码
import matplotlib.pyplot as plt

# 绘制直方图
df['Age'].hist()
plt.show()

# 绘制箱形图
df.boxplot(column='Salary')
plt.show()

总结

本教程简要介绍了 Pandas 的安装、数据载入、选择、清洗、统计和可视化等基本功能。掌握这些基础操作后,你将能够更深入地使用 Pandas 进行复杂的数据分析任务。

通过以上步骤,你可以开始使用 Pandas 对数据进行基本的处理和分析,为更高级的数据科学工作打下坚实的基础。

相关推荐
阿里云大数据AI技术2 小时前
鹰角网络基于阿里云EMR Serverless StarRocks的实时分析工程实践
数据库·数据分析
集成显卡2 小时前
使用 Google 开源 AI 工具 LangExtract 进行结构化信息抽取
python·google·openai
久笙&2 小时前
对象存储解决方案:MinIO 的架构与代码实战
数据库·python·架构
不甘懦弱3 小时前
阿里云搭建flask服务器
服务器·python·flask
赵英英俊3 小时前
Python day51
人工智能·pytorch·python
律品3 小时前
pytest的前置与后置
开发语言·python·pytest
飞翔的佩奇3 小时前
【完整源码+数据集+部署教程】遥感森林砍伐检测系统源码和数据集:改进yolo11-SWC
python·yolo·计算机视觉·数据集·yolo11·遥感森林砍伐检测
阿汤哥的程序之路3 小时前
Python如何将两个列表转化为一个字典
python
RabbitYao4 小时前
Android 项目 通过 AndroidStringsTool 更新多语言词条
android·python
RabbitYao4 小时前
使用 Gemini 及 Python 更新 Android 多语言 Excel 文件
android·python