whisper之初步使用记录

文章目录

前言

一、whisper是什么?

二、使用步骤

1.安装

2.python调用

3.识别效果评估

4.一点封装

5.参考链接

总结


前言

随着AI大模型的不断发展,语音识别等周边内容也再次引发关注,通过语音转文字再与大模型交互,从而实现语音与大模型交互。

今天我们介绍下语音识别领域的顶级选手whisper。


一、whisper是什么?

whisper是openai开源的语音识别模型,也是使用了Transformer架构。

openai宣称whisper的语音识别能力已经到了人类的水平。

接下来我们参考Github结合其他技术博客内容,实操下whisper的使用。

二、使用步骤

1.安装

1)pip安装whisper

复制代码
pip install -U openai-whisper

2)安装ffmpeg

下载地址:ffmpeg下载地址https://github.com/BtbN/FFmpeg-Builds/releases

选择对应操作系统的安装包即可

Linux系统也可以直接命令方式安装。

对于Windows系统,下载到本地后解压缩即可,但是需要设置环境变量,路径bin(就是在这个路径下有ffmpeg.exe)

特意说明:whisper内部其实调用了ffmpeg,使用的就是cmd形式,应该是将音频文件转为流式以及按时间段分成小段音频(最终识别结果就是按时间段分开的)

2.python调用

python 复制代码
import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

第一次运行的时候,首先需要下载模型文件,base属于比较小尺寸的模型,还有small、large等。

另外如果可能报错,可以尝试重启下开发工具再试,可能就好了(我就遇到这种问题,可能没有重启开发工具,找不到ffmpeg)

3.识别效果评估

我使用了一个11分钟的会议录音文件测试。CPU环境。

使用base模型,用时约2分钟,质量还行

使用small模型,用时约4分钟,质量比base模型的好一些,但是有些反而不如base模型的。

整体上,还行吧。

4.一点封装

由于不同大小的模型识别速度上还是差不少,因此还要结合实际情况选择使用哪个模型,基于这个基础对调用做了一点封装

python 复制代码
import whisper
from datetime import datetime

# 模型根路径
model_root="E:\Models\whisper"

class whisper_utils:

    # model_name="base"
    # model_name="small"

    def __init__(self,model_name="base"):
        self.model = whisper.load_model(name=model_name,download_root=model_root)

    def audio_to_txt(self,audio_file: str):

        now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        print(f"{now} 开始识别...")
        result = self.model.transcribe(audio_file)

        now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        print(f"{now} 识别完成")

        return result

这里我把模型路径自己设置了下。

和多数模型文件一样,默认情况下,whisper模型也会下载到C盘Users下当前用户文件夹的.cache下,很容易导致C盘塞满。

5.参考链接

openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision (github.com)https://github.com/openai/whisper


总结

本篇主要介绍了whisper的安装、调用、识别效果评估以及一点调用封装。希望可以帮助正好有需要的小伙伴。

相关推荐
Luke Ewin11 小时前
CentOS7.9部署FunASR实时语音识别接口 | 部署商用级别实时语音识别接口FunASR
人工智能·语音识别·实时语音识别·商用级别实时语音识别
fydw_71514 小时前
音频生成技术的前沿探索:从语音合成到智能Podcast
人工智能·音视频·语音识别
石臻臻的杂货铺2 天前
推荐几个常用免费的文本转语音工具
人工智能·语音识别
q_q王2 天前
‌FunASR‌阿里开源的语音识别工具
python·大模型·llm·语音识别
打小就很皮...4 天前
使用 React 实现语音识别并转换功能
人工智能·语音识别
会游泳的石头4 天前
在Java项目中实现本地语音识别与热点检测,并集成阿里云智能语音服务(优化版)
阿里云·语音识别·xcode
Hello server6 天前
利用 Python pyttsx3实现文字转语音(TTS)
python·学习·语音识别
limingade7 天前
手机打电话时由对方DTMF响应切换多级IVR语音应答(一)
人工智能·语音识别·手机实现来电ivr导航·多级ivr语音导航
create177 天前
使用 AI 如何高效解析视频内容?生成思维导图或分时段概括总结
人工智能·aigc·语音识别·ai写作
limingade8 天前
手机SIM卡打电话时识别对方按下的DTMF按键(二)
智能手机·语音识别·dtmf识别·dtmf解码器·sim卡通话识别dtmf·手机通话识别dtmf·手机通话语音拦截