(CDA数据分析师笔记)第六章 业务分析方法十一

第四章描述性统计分析

概述

统计学解决问题的步骤:收集数据、处理数据、分析数据、解释数据。

收集数据是数据分析的前提,直接来源的数据是一手数据,间接来源的数据是二手数据。

调查和实验的区别:调查强调的是不对数据对象进行干扰,任其自然发展,收集发展过程中的数据;实验强调的是有目的的对数据对象进行因素干扰,从而验证这些因素对数据对象是否产生影响,以及产生何种影响。

处理数据:包括将收集的数据进行数据编码、数据库搭建、数据录入、数据审核(包括数据完整性、准确性、时效性、适用性等。)按照研究问题的需要进行数据筛选、数据分组、数据分割、数据合并、数据变形、数据转换等;并进行数据质量评估、数据特征分析、数据可视化分析等探索性分析;这主要是数据清洗岗位的工作。

分析数据:是数据分析师的核心工作。数据分析方法分两大类,描述性统计分析方法和推断性统计分析方法。

描述性统计分析方法:结合数据,对实际问题进行分布特征的描述,也称数据分布特征的描述性分析方法。

推断性统计分析方法:根据掌握的样本数据对总体进行估计或检验,侧重于对总体特征的估计或检验推断,即包括参数估计、假设检验。

参数估计:当总体信息未知时,通过抽取样本来估计总体信息。

假设检验:假设知晓总体某个信息,但无法确认信息是否正确,因此需要抽取样本信息进行假设检验。

注意:部分人认为预测也是推断性统计分析方法中的一种。原因是估计和预测的不同,估计时,总体是存在的、确定的、未知的,即对一个已经发生的事物状态进行估计。预测时,预测的情况是不存在的、不确定的、未知的,即对一个未发生的事物进行预测。两者一个是事后估计,一个是事前预测,本质不同。

复杂数据分析方法:以基本数据分析方法为基础,常结合某类具体问题、某类特殊数据、某类特殊对象等,融合描述性统计分析方法和推断性统计分析方法。例如:相关分析、时间序列分析、生存分析。

解释数据:统计学最后的环节,连接分析数据与解决实际问题的重要桥梁。

相关推荐
saoys1 小时前
Opencv 学习笔记:轮廓发现(提取 + 绘制全流程)
笔记·opencv·学习
zhangrelay2 小时前
如何让手机电脑流畅飞起低碳节能性能拉满-软件安装篇-ESR-Extended Support Release-延长支持版-LTS
linux·运维·笔记·学习
@––––––2 小时前
论文阅读笔记:The Bitter Lesson (苦涩的教训)
论文阅读·人工智能·笔记
宸津-代码粉碎机2 小时前
用MySQL玩转数据可视化
数据库·mysql·信息可视化
红队it3 小时前
【数据分析+机器学习】基于机器学习的招聘数据分析可视化预测推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
数据库·机器学习·数据分析
计算机学姐3 小时前
基于SpringBoot的自习室座位预定系统【预约选座+日期时间段+协同过滤推荐算法+数据可视化统计】
java·vue.js·spring boot·后端·spring·信息可视化·tomcat
傻小胖3 小时前
6.BTC-网络-北大肖臻老师客堂笔记
笔记·web3·区块链
Lonely 净土3 小时前
第5-10天学习笔记
笔记·学习
EmbedLinX4 小时前
内存池学习笔记(附C++完整实现)
c++·笔记·学习
嵌入式×边缘AI:打怪升级日志4 小时前
USBX虚拟串口源码分析与改造笔记
笔记·学习笔记·usb