(CDA数据分析师笔记)第六章 业务分析方法十一

第四章描述性统计分析

概述

统计学解决问题的步骤:收集数据、处理数据、分析数据、解释数据。

收集数据是数据分析的前提,直接来源的数据是一手数据,间接来源的数据是二手数据。

调查和实验的区别:调查强调的是不对数据对象进行干扰,任其自然发展,收集发展过程中的数据;实验强调的是有目的的对数据对象进行因素干扰,从而验证这些因素对数据对象是否产生影响,以及产生何种影响。

处理数据:包括将收集的数据进行数据编码、数据库搭建、数据录入、数据审核(包括数据完整性、准确性、时效性、适用性等。)按照研究问题的需要进行数据筛选、数据分组、数据分割、数据合并、数据变形、数据转换等;并进行数据质量评估、数据特征分析、数据可视化分析等探索性分析;这主要是数据清洗岗位的工作。

分析数据:是数据分析师的核心工作。数据分析方法分两大类,描述性统计分析方法和推断性统计分析方法。

描述性统计分析方法:结合数据,对实际问题进行分布特征的描述,也称数据分布特征的描述性分析方法。

推断性统计分析方法:根据掌握的样本数据对总体进行估计或检验,侧重于对总体特征的估计或检验推断,即包括参数估计、假设检验。

参数估计:当总体信息未知时,通过抽取样本来估计总体信息。

假设检验:假设知晓总体某个信息,但无法确认信息是否正确,因此需要抽取样本信息进行假设检验。

注意:部分人认为预测也是推断性统计分析方法中的一种。原因是估计和预测的不同,估计时,总体是存在的、确定的、未知的,即对一个已经发生的事物状态进行估计。预测时,预测的情况是不存在的、不确定的、未知的,即对一个未发生的事物进行预测。两者一个是事后估计,一个是事前预测,本质不同。

复杂数据分析方法:以基本数据分析方法为基础,常结合某类具体问题、某类特殊数据、某类特殊对象等,融合描述性统计分析方法和推断性统计分析方法。例如:相关分析、时间序列分析、生存分析。

解释数据:统计学最后的环节,连接分析数据与解决实际问题的重要桥梁。

相关推荐
落羽凉笙20 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
会周易的程序员21 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
零售ERP菜鸟1 天前
当业务战略摇摆不定:在变化中锚定不变的IT架构之道
信息可视化·职场和发展·架构·创业创新·学习方法·业界资讯
hssfscv1 天前
Javaweb学习笔记——后端实战2_部门管理
java·笔记·学习
于越海1 天前
材料电子理论核心四个基本模型的python编程学习
开发语言·笔记·python·学习·学习方法
sensen_kiss1 天前
INT303 Big Data Analysis 大数据分析 Pt.11 模型选择和词向量(Word Embeddings)
大数据·数据挖掘·数据分析
laocooon5238578861 天前
数据收集, 数据清洗,数据分析,然后可视化,都涉及哪些知识
数据挖掘·数据分析
我命由我123451 天前
开发中的英语积累 P26:Recursive、Parser、Pair、Matrix、Inset、Appropriate
经验分享·笔记·学习·职场和发展·求职招聘·职场发展·学习方法
北岛寒沫1 天前
北京大学国家发展研究院 经济学原理课程笔记(第二十三课 货币供应与通货膨胀)
经验分享·笔记·学习
wdfk_prog1 天前
[Linux]学习笔记系列 -- [fs][proc]
linux·笔记·学习