【提示学习论文】TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model

TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model(CVPR2024)

  • 基于文本的类感知提示调优的VLM
  • KgCoOp为baseline,进行改进,把 w c l i p w_{clip} wclip进行投影,然后与Learnable prompts进行结合。

Abstract

近年来,通过可学习的域共享或图像条件的文本tokens,促进生成适用于特定任务的分类器

问题:

这些textual tokens对unseen域具有有限的泛化能力,不能动态地适应测试类的分布

解决:

提出了新的基于文本的类感知提示调优(TCP,Textual-based Class-aware Prompt)。显式地结合关于类的先验知识,增强它们的可辨别性。利用文本知识嵌入(TKE),映射高泛化性的类级文本知识,到类感知文本tokens。通过无缝地将这些类感知提示集成到Text Encoder中,可以生成一个动态的类感知分类器,以增强对不可见域的可辨别性。

推断阶段,TKE动态地生成与unseen类相关的类感知提示,可作为即插即用的模型与现有方法轻松结合。

1 Introduction

图像条件文tokens封装了每个图像的特定知识,特别是测试图像,从而更容易泛化到unseen类。

3 方法

TKE将一般类级的textual embedding转化成类感知提示,然后与Learnable tokens 结合。

3.2 基于文本的类感知提示提示调优

TKE:投影class-level embedding W c l i p W^{clip} Wclip,得到class-aware prompt T

TKE包括两层

  • 下投影层
    使用权重 W d o w n W_{down} Wdown将 W c l i p W^{clip} Wclip其投成低维特征
  • 上投影层
    使用权重 W u p W_{up} Wup将 W d w o n W^{dwon} Wdwon其投成高维特征
    得到
    ![[TCPg5.png]]
    再重塑成
    ![[TCPg6.png]]
    插入到文本编码器的中间层

4 实验

作者将其分为tp、vp、dtp、dvp,比较了近年来的方法

消融实验

  • Prompt长度:M=8最好
  • 不同模板的效果:可学习prompt最好
  • Dmid的作用:128时效果最好
  • 类感知prompt拼接到哪:第8层最好
相关推荐
charlie1145141913 分钟前
嵌入式的现代C++教程——constexpr与设计技巧
开发语言·c++·笔记·单片机·学习·算法·嵌入式
好奇龙猫9 分钟前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
好奇龙猫1 小时前
【大学院-筆記試験練習:数据库(データベース問題訓練) と 软件工程(ソフトウェア)(7)】
学习
P-ShineBeam2 小时前
引导式问答-对话式商品搜索-TRACER
人工智能·语言模型·自然语言处理·知识图谱
j_jiajia2 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
2301_783360132 小时前
关于RNAseq——从fastq到gene_counts全流程
笔记·学习
_李小白2 小时前
【AlohaMini学习笔记】第三天:AlohaMini相关技术
笔记·学习
我命由我123453 小时前
Photoshop - Photoshop 工具栏(57)模糊工具
学习·ui·职场和发展·求职招聘·职场发展·学习方法·photoshop
yatingliu20193 小时前
将深度学习环境迁移至老旧系统| 个人学习笔记
笔记·深度学习·学习
week_泽3 小时前
第1课:AI Agent是什么 - 学习笔记_1
人工智能·笔记·学习