【提示学习论文】TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model

TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model(CVPR2024)

  • 基于文本的类感知提示调优的VLM
  • KgCoOp为baseline,进行改进,把 w c l i p w_{clip} wclip进行投影,然后与Learnable prompts进行结合。

Abstract

近年来,通过可学习的域共享或图像条件的文本tokens,促进生成适用于特定任务的分类器

问题:

这些textual tokens对unseen域具有有限的泛化能力,不能动态地适应测试类的分布

解决:

提出了新的基于文本的类感知提示调优(TCP,Textual-based Class-aware Prompt)。显式地结合关于类的先验知识,增强它们的可辨别性。利用文本知识嵌入(TKE),映射高泛化性的类级文本知识,到类感知文本tokens。通过无缝地将这些类感知提示集成到Text Encoder中,可以生成一个动态的类感知分类器,以增强对不可见域的可辨别性。

推断阶段,TKE动态地生成与unseen类相关的类感知提示,可作为即插即用的模型与现有方法轻松结合。

1 Introduction

图像条件文tokens封装了每个图像的特定知识,特别是测试图像,从而更容易泛化到unseen类。

3 方法

TKE将一般类级的textual embedding转化成类感知提示,然后与Learnable tokens 结合。

3.2 基于文本的类感知提示提示调优

TKE:投影class-level embedding W c l i p W^{clip} Wclip,得到class-aware prompt T

TKE包括两层

  • 下投影层
    使用权重 W d o w n W_{down} Wdown将 W c l i p W^{clip} Wclip其投成低维特征
  • 上投影层
    使用权重 W u p W_{up} Wup将 W d w o n W^{dwon} Wdwon其投成高维特征
    得到
    ![[TCPg5.png]]
    再重塑成
    ![[TCPg6.png]]
    插入到文本编码器的中间层

4 实验

作者将其分为tp、vp、dtp、dvp,比较了近年来的方法

消融实验

  • Prompt长度:M=8最好
  • 不同模板的效果:可学习prompt最好
  • Dmid的作用:128时效果最好
  • 类感知prompt拼接到哪:第8层最好
相关推荐
前路不黑暗@1 小时前
C语言:操作符详解(二)
c语言·开发语言·经验分享·笔记·学习·学习方法·visual studio
xiaoxiaoxiaolll2 小时前
金刚石基植入体新突破!Adv. Funct. Mater. 报道首例增材制造固态摩擦电能量收集器
学习
x.Jessica2 小时前
网络的构成元素
网络·学习·计算机网络
zzywxc7872 小时前
详细探讨AI在金融、医疗、教育和制造业四大领域的具体落地案例,并通过代码、流程图、Prompt示例和图表等方式展示这些应用的实际效果。
开发语言·javascript·人工智能·深度学习·金融·prompt·流程图
yiqiqukanhaiba2 小时前
STM32学习笔记14-I2C硬件控制
笔记·stm32·学习
悠哉悠哉愿意2 小时前
【Python语法基础学习笔记】if语句
笔记·python·学习
杜子不疼.3 小时前
《Python学习之第三方库:开启无限可能》
开发语言·python·学习
小张的博客之旅4 小时前
宁波市第八届网络安全大赛初赛(REVERSE-Writeup)
学习·网络安全·reverse
墨雨听阁5 小时前
8.18网络编程——基于UDP的TFTP文件传输客户端
网络·网络协议·学习·udp
小晶晶京京5 小时前
day35-负载均衡
运维·网络·网络协议·学习·负载均衡