【提示学习论文】TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model

TCP:Textual-based Class-aware Prompt tuning for Visual-Language Model(CVPR2024)

  • 基于文本的类感知提示调优的VLM
  • KgCoOp为baseline,进行改进,把 w c l i p w_{clip} wclip进行投影,然后与Learnable prompts进行结合。

Abstract

近年来,通过可学习的域共享或图像条件的文本tokens,促进生成适用于特定任务的分类器

问题:

这些textual tokens对unseen域具有有限的泛化能力,不能动态地适应测试类的分布

解决:

提出了新的基于文本的类感知提示调优(TCP,Textual-based Class-aware Prompt)。显式地结合关于类的先验知识,增强它们的可辨别性。利用文本知识嵌入(TKE),映射高泛化性的类级文本知识,到类感知文本tokens。通过无缝地将这些类感知提示集成到Text Encoder中,可以生成一个动态的类感知分类器,以增强对不可见域的可辨别性。

推断阶段,TKE动态地生成与unseen类相关的类感知提示,可作为即插即用的模型与现有方法轻松结合。

1 Introduction

图像条件文tokens封装了每个图像的特定知识,特别是测试图像,从而更容易泛化到unseen类。

3 方法

TKE将一般类级的textual embedding转化成类感知提示,然后与Learnable tokens 结合。

3.2 基于文本的类感知提示提示调优

TKE:投影class-level embedding W c l i p W^{clip} Wclip,得到class-aware prompt T

TKE包括两层

  • 下投影层
    使用权重 W d o w n W_{down} Wdown将 W c l i p W^{clip} Wclip其投成低维特征
  • 上投影层
    使用权重 W u p W_{up} Wup将 W d w o n W^{dwon} Wdwon其投成高维特征
    得到
    ![[TCPg5.png]]
    再重塑成
    ![[TCPg6.png]]
    插入到文本编码器的中间层

4 实验

作者将其分为tp、vp、dtp、dvp,比较了近年来的方法

消融实验

  • Prompt长度:M=8最好
  • 不同模板的效果:可学习prompt最好
  • Dmid的作用:128时效果最好
  • 类感知prompt拼接到哪:第8层最好
相关推荐
深蓝海拓5 分钟前
PySide6,QCoreApplication::aboutToQuit与QtQore.qAddPostRoutine:退出前后的清理工作
笔记·python·qt·学习·pyqt
酒鼎6 分钟前
学习笔记(3)HTML5新特性(第2章)
笔记·学习·html5
L***一21 分钟前
2026届大专跨境电商专业毕业生就业能力提升路径探析
学习
.小墨迹33 分钟前
apollo学习之借道超车的速度规划
linux·c++·学习·算法·ubuntu
ZH154558913144 分钟前
Flutter for OpenHarmony Python学习助手实战:模块与包管理的实现
python·学习·flutter
Gain_chance1 小时前
33-学习笔记尚硅谷数仓搭建-DWS层交易域用户粒度订单表分析及设计代码
数据库·数据仓库·hive·笔记·学习·datagrip
hqyjzsb1 小时前
盲目用AI提效?当心陷入“工具奴”陷阱,效率不增反降
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·远程工作
承渊政道1 小时前
Linux系统学习【Linux系统的进度条实现、版本控制器git和调试器gdb介绍】
linux·开发语言·笔记·git·学习·gitee
AI资源库3 小时前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型
野犬寒鸦3 小时前
从零起步学习并发编程 || 第七章:ThreadLocal深层解析及常见问题解决方案
java·服务器·开发语言·jvm·后端·学习