基于MSWA相继加权平均的交通流量分配算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于MSWA相继加权平均的交通流量分配算法matlab仿真.如图所示交通网络中,包含6个节点、11各路段、9个OD对。经枚举可得每个OD对间存在3条无折返有效路径,共27条。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

复制代码
......................................................................
    if m == 1
       r(m)     = m^d;  
    else
       r(m)     = r(m-1) + m^d; 
       alpha(m) = m^d/r(m);
       xa(:,m)    = (1-alpha(m))*xa(:,m-1) + alpha(m)*ya(:,m);
    end
    
    if mean(abs(xa(:,m)-ya(:,m))) <= es & m > 1
       m%输出迭代次数
       break;
    end
    
    %27个路径迭代曲线图
    indx=0;
    for i = 1:Rdo
        for j = 1:Cdo
            for k = 1:3
                indx=indx+1;
                dss(indx,m) = PkOD(i,j,k);
            end
        end
    end
    
end     
       
 
figure;
plot(dss(1,:),'r','linewidth',2);hold on;
plot(dss(2,:),'k','linewidth',2);hold on;
plot(dss(3,:),'b','linewidth',2);hold on;
plot(dss(4,:),'m','linewidth',2);hold on;
plot(dss(5,:),'g','linewidth',2);hold on;
plot(dss(6,:),'c','linewidth',2);hold on;
legend('路径1','路径2','路径3','路径4','路径5','路径6');
xlabel('迭代次数');
ylabel('收敛值');
grid on
 
    
figure;
plot(dss(7,:),'r','linewidth',2);hold on;
plot(dss(8,:),'k','linewidth',2);hold on;
plot(dss(9,:),'b','linewidth',2);hold on;
plot(dss(10,:),'m','linewidth',2);hold on;
plot(dss(11,:),'g','linewidth',2);hold on;
plot(dss(12,:),'c','linewidth',2);hold on;
legend('路径7','路径8','路径9','路径10','路径11','路径12');
xlabel('迭代次数');
ylabel('收敛值');
grid on


figure;
plot(dss(13,:),'r','linewidth',2);hold on;
plot(dss(14,:),'k','linewidth',2);hold on;
plot(dss(15,:),'b','linewidth',2);hold on;
plot(dss(16,:),'m','linewidth',2);hold on;
plot(dss(17,:),'g','linewidth',2);hold on;
plot(dss(18,:),'c','linewidth',2);hold on;
legend('路径13','路径14','路径15','路径16','路径17','路径18');
xlabel('迭代次数');
ylabel('收敛值');
grid on


figure;
plot(dss(19,:),'r','linewidth',2);hold on;
plot(dss(20,:),'k','linewidth',2);hold on;
plot(dss(21,:),'b','linewidth',2);hold on;
plot(dss(22,:),'m','linewidth',2);hold on;
plot(dss(23,:),'g','linewidth',2);hold on;
plot(dss(24,:),'c','linewidth',2);hold on;
legend('路径19','路径20','路径21','路径22','路径23','路径24');
xlabel('迭代次数');
ylabel('收敛值');
grid on

figure;
plot(dss(25,:),'r','linewidth',2);hold on;
plot(dss(26,:),'k','linewidth',2);hold on;
plot(dss(27,:),'b','linewidth',2);hold on;
legend('路径25','路径26','路径27');
xlabel('迭代次数');
ylabel('收敛值');
grid on


figure;
bar([dss(:,end)]);
xlabel('路径');
ylabel('流量分配');
06_050m

4.本算法原理

基于MSWA(Modified Successive Weighted Averaging)相继加权平均的交通流量分配算法,是交通工程领域中用于预测和分析城市路网中交通流量分布的一种方法。它在经典的Stochastic User Equilibrium (SUE)模型基础上进行了改进,通过引入动态的权重策略,提高了分配结果的稳定性和收敛效率。MSWA算法特别适用于处理大尺度路网中复杂的路径选择行为和交通流动态变化问题。在交通流量分配问题中,核心目标是确定在给定的路网结构、出行需求和用户行为准则下,如何合理分配交通需求到路网中的各个路径上,以达到用户均衡状态。用户均衡(User Equilibrium, UE)意味着没有任何出行者能够通过改变自己的出行路径来减少个人旅行成本。

MSWA算法的核心思想是通过迭代过程,逐步逼近用户均衡状态。每一轮迭代中,算法依据当前的流量分配情况,动态调整各路径的权重,以反映其相对拥挤程度,然后基于调整后的权重重新分配交通流量。这种动态调整机制有助于算法更快地收敛到均衡解。

利用相继加权平均算法(MSWA)求解配流结果,算法步骤如下:

5.完整程序

VVV

相关推荐
今天吃饺子15 小时前
如何用MATLAB调用python实现深度学习?
开发语言·人工智能·python·深度学习·matlab
硬汉嵌入式18 小时前
专为 MATLAB 优化的 AI 助手MATLAB Copilot
人工智能·matlab·copilot
Dev7z1 天前
基于Matlab遗传算法与蚁群算法的风光储并网微电网容量优化研究
算法·matlab·蚁群算法·多能源微电网
jllllyuz1 天前
基于粒子群优化(PSO)的特征选择与支持向量机(SVM)分类
开发语言·算法·matlab
一只肥瘫瘫1 天前
基于MATLAB的滑膜观测器仿真搭建
单片机·嵌入式硬件·matlab
bubiyoushang8882 天前
MATLAB 实现多能源系统(MES)多目标优化
支持向量机·matlab·能源
算法如诗2 天前
**MATLAB R2025a** 环境下,基于 **双向时间卷积网络(BITCN)+ 双向长短期记忆网络(BiLSTM)** 的多特征分类预测完整实现
开发语言·网络·matlab
bubiyoushang8882 天前
基于MATLAB的马尔科夫链蒙特卡洛(MCMC)模拟实现方法
人工智能·算法·matlab
轻微的风格艾丝凡2 天前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn