实验环境:anaconda、jupyter notebook
实验用到的包opencv、numpy、matplotlib、tesseract
一、opencv透视变换
原图
图片是我拍的耳机说明书,哈哈哈哈,你也可以使用自己拍的照片,最好是英文内容,tesseract默认识别英文,识别中文需要额外训练

包导入
python
import cv2
import matplotlib.pyplot as plt
import numpy as np
图像预处理(比例放缩)
python
page = cv2.imread('page.jpg')
ratio = 500.0 / page.shape[0]
# 放缩比例
page_original = page.copy()
page_resize = cv2.resize(page_original,(int(page.shape[1] * ratio),500))
plt.imshow(cv2.cvtColor(page_resize, cv2.COLOR_BGR2RGB))
plt.show()

图像转为二值图像
python
# 转灰度图
page_gray = cv2.cvtColor(page_resize, cv2.COLOR_BGR2GRAY)
# 高斯滤波,去除噪点
page_guassion = cv2.GaussianBlur(page_gray,(5,5),0)
# canny边缘检测
page_canny = cv2.Canny(page_guassion, 30, 100)
plt.figure(figsize=(20,25))
plt.subplot(131)
plt.imshow(page_gray, 'gray')
plt.subplot(132)
plt.imshow(page_guassion, 'gray')
plt.subplot(133)
plt.imshow(page_canny, 'gray')
plt.show()

获得目标图像外轮廓
轮廓检测会得到很多的轮廓,这里通过周长比较,拿到周长最长的(在实验图像中,显然周长最长的轮廓是外轮廓)
python
# 轮廓检测
binary, page_contours, hierarchy = cv2.findContours(page_canny, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
page_cnt = None
page_cnt_arc = 0
# 最大面积的轮廓
for page_contour in page_contours:
# 算近似轮廓
page_cnt_arc_temp = cv2.arcLength(page_contour,True)
page_cnt_arc_approx = cv2.approxPolyDP(page_contour, 0.05 * page_cnt_arc_temp, True)
# 取最大周长的轮廓
page_cnt_arc_temp = cv2.arcLength(page_cnt_arc_approx,True)
if page_cnt_arc_temp > page_cnt_arc:
page_cnt = page_cnt_arc_approx
page_cnt_arc = page_cnt_arc_temp
page_temp = page_resize.copy()
cv2.drawContours(page_temp, [page_cnt], -1, (0,255,0),2)
plt.figure(figsize=(5,10))
plt.imshow(cv2.cvtColor(page_temp, cv2.COLOR_BGR2RGB))
plt.show()

构建透视变换的原矩阵和目标矩阵
python
print('原始',page_cnt)
page_cnt_deal = np.float32(page_cnt[:,0,:]) / ratio
print('处理',page_cnt_deal)
A,B,C,D = page_cnt_deal
print('顶点',A,B,C,D)
# 在原始图像上画轮廓
page_temp = page.copy()
page_cnt_deal_temp = np.array([[np.int32(A)],[np.int32(B)],[np.int32(C)],[np.int32(D)]])
print(page_cnt_deal_temp)
cv2.drawContours(page_temp, [page_cnt_deal_temp], -1, (0,255,0),10)
plt.imshow(cv2.cvtColor(page_temp, cv2.COLOR_BGR2RGB))
plt.show()
W1 = np.sqrt((A[0] - B[0]) ** 2 + (A[1] -B[1]) ** 2)
W2 = np.sqrt((C[0] -D[0]) ** 2 + (C[1] -D[1]) ** 2)
W = max(int(W1), int(W2))
H1 = np.sqrt((A[0] - C[0]) ** 2 + (A[1] -C[1]) ** 2)
H2 = np.sqrt((B[0] -D[0]) ** 2 + (B[1] -D[1]) ** 2)
H = max(int(H1), int(H2))
# 目标坐标
dest = np.array([
[0,W],
[H,W],
[H,0],
[0,0]
], dtype=np.float32)
print('目标',dest)
# 在原始图像上画轮廓
page_temp = page.copy()
page_cnt_deal_temp = np.array([[np.int32(dest[0])],[np.int32(dest[1])],[np.int32(dest[2])],[np.int32(dest[3])]])
print(page_cnt_deal_temp)
cv2.drawContours(page_temp, [page_cnt_deal_temp], -1, (0,255,0),10)
plt.imshow(cv2.cvtColor(page_temp, cv2.COLOR_BGR2RGB))
plt.show()


透视变换
这里创建出的矩阵M就是原坐标矩阵pagecntdeal到目标坐标矩阵dest的变换矩阵。
python
# 透视变换
M = cv2.getPerspectiveTransform(page_cnt_deal, dest)
page_warped = cv2.warpPerspective(page, M, (int(H),int(W)))
plt.imshow(cv2.cvtColor(page_warped, cv2.COLOR_BGR2RGB))
plt.show()

二值化处理
这里二值化处理是为了ocr识别更清晰
python
# 二值化
page_warped_gray = cv2.cvtColor(page_warped, cv2.COLOR_BGR2GRAY)
res,page_warped_bin = cv2.threshold(page_warped_gray, 100,255, cv2.THRESH_BINARY)
plt.imshow(page_warped_bin,'gray')
plt.show()

二、tesseract-orc识别
安装tesseract
ubuntu上安装非常容易
sudo apt install tesseract-ocr
查看版本号
tesseract -v

命令行使用
在当前目录下放一张图片,你可以自己画一张

tesseract 图片名称 输出文件名称
不得不说,这个算法还是有些许偏颇,像我这样写得一手好字,居然也被认错了

安装pytesseract
pip install pytesseract
使用tesseract识别刚刚透视转换的结果
python
import pytesseract
text = pytesseract.image_to_string(page_warped_bin)
print(text)
牛逼!
