OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV中超分辨率(Super Resolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。

这个类是 OpenCV 中用于执行 深度学习超分辨率推理 的主要类。你可以用它来加载预训练的超分辨率模型(如 EDSR、ESPCN、FSRCNN、LapSRN 等),并对图像进行放大。

使用步骤

  1. 创建 DnnSuperRes 对象
cpp 复制代码
#include <opencv2/dnn_superres.hpp>
cv::dnn_superres::DnnSuperResImpl sr;

或者使用智能指针方式:

cpp 复制代码
Ptr<cv::dnn_superres::DnnSuperResImpl> sr = makePtr<cv::dnn_superres::DnnSuperResImpl>();
  1. 加载模型

OpenCV 的超分辨率模块支持以下模型架构:

  • edsr
  • espcn
  • fsrcnn
  • lapsrn

示例代码:

cpp 复制代码
sr.readModel("EDSR_x3.pb"); // 替换为你的模型路径
sr.setModel("edsr", 3);     // 指定模型类型和放大倍数
  1. 超分推理
cpp 复制代码
Mat img = imread("input.jpg");
Mat result;

sr.upsample(img, result);

imwrite("output.jpg", result);

示例代码

cpp 复制代码
#include <opencv2/dnn_superres.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    using namespace cv;
    using namespace cv::dnn_superres;

    // 创建超分辨率对象
    DnnSuperResImpl sr;

    // 加载模型
    sr.readModel( "FSRCNN_x3.pb" );
    sr.setModel( "fsrcnn", 3 );

    // 读取图像
    Mat img = imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png" );
    if ( img.empty() )
    {
        std::cerr << "Failed to load image!" << std::endl;
        return -1;
    }

    // 超分辨率推理
    Mat result;
    sr.upsample( img, result );

    // 保存结果
    imwrite( "output.jpg", result );

    imshow( "Original", img );
    imshow( "Super Resolved", result );
    waitKey( 0 );

    return 0;
}

运行结果

图像确实变得很大,清晰度也没变

代码中模型文件下载地址:https://download.csdn.net/download/jndingxin/91263821

相关推荐
星期天要睡觉17 小时前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
南山二毛19 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
大数据张老师19 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****19 小时前
吴恩达机器学习合集
人工智能·机器学习
anneCoder19 小时前
AI大模型应用研发工程师面试知识准备目录
人工智能·深度学习·机器学习
骑驴看星星a19 小时前
没有深度学习
人工智能·深度学习
youcans_19 小时前
【医学影像 AI】YoloCurvSeg:仅需标注一个带噪骨架即可实现血管状曲线结构分割
人工智能·yolo·计算机视觉·分割·医学影像
空白到白19 小时前
机器学习-决策树
人工智能·决策树·机器学习
奇舞精选19 小时前
超越Siri的耳朵:ASR与Whisper零代码部署实战指南
前端·人工智能·aigc
说私域19 小时前
兴趣电商内容数据洞察未来市场走向研究——基于开源AI智能名片链动2+1模式S2B2C商城小程序的实践
人工智能·小程序