OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV中超分辨率(Super Resolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。

这个类是 OpenCV 中用于执行 深度学习超分辨率推理 的主要类。你可以用它来加载预训练的超分辨率模型(如 EDSR、ESPCN、FSRCNN、LapSRN 等),并对图像进行放大。

使用步骤

  1. 创建 DnnSuperRes 对象
cpp 复制代码
#include <opencv2/dnn_superres.hpp>
cv::dnn_superres::DnnSuperResImpl sr;

或者使用智能指针方式:

cpp 复制代码
Ptr<cv::dnn_superres::DnnSuperResImpl> sr = makePtr<cv::dnn_superres::DnnSuperResImpl>();
  1. 加载模型

OpenCV 的超分辨率模块支持以下模型架构:

  • edsr
  • espcn
  • fsrcnn
  • lapsrn

示例代码:

cpp 复制代码
sr.readModel("EDSR_x3.pb"); // 替换为你的模型路径
sr.setModel("edsr", 3);     // 指定模型类型和放大倍数
  1. 超分推理
cpp 复制代码
Mat img = imread("input.jpg");
Mat result;

sr.upsample(img, result);

imwrite("output.jpg", result);

示例代码

cpp 复制代码
#include <opencv2/dnn_superres.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    using namespace cv;
    using namespace cv::dnn_superres;

    // 创建超分辨率对象
    DnnSuperResImpl sr;

    // 加载模型
    sr.readModel( "FSRCNN_x3.pb" );
    sr.setModel( "fsrcnn", 3 );

    // 读取图像
    Mat img = imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png" );
    if ( img.empty() )
    {
        std::cerr << "Failed to load image!" << std::endl;
        return -1;
    }

    // 超分辨率推理
    Mat result;
    sr.upsample( img, result );

    // 保存结果
    imwrite( "output.jpg", result );

    imshow( "Original", img );
    imshow( "Super Resolved", result );
    waitKey( 0 );

    return 0;
}

运行结果

图像确实变得很大,清晰度也没变

代码中模型文件下载地址:https://download.csdn.net/download/jndingxin/91263821

相关推荐
却道天凉_好个秋19 分钟前
OpenCV(二十一):HSV与HSL
人工智能·opencv·计算机视觉
从后端到QT21 分钟前
标量-向量-矩阵-基础知识
人工智能·机器学习·矩阵
新智元23 分钟前
65 岁图灵巨头离职创业!LeCun 愤然与小扎决裂,Meta 巨震
人工智能·openai
机器之心25 分钟前
全球第二、国内第一!钉钉发布DeepResearch多智能体框架,已在真实企业部署
人工智能·openai
新智元32 分钟前
翻译界的 ChatGPT 时刻!Meta 发布新模型,几段示例学会冷门新语言
人工智能·openai
沉默媛33 分钟前
什么是Hinge损失函数
人工智能·损失函数
努力小周39 分钟前
基于ESP32的宠物喂食小屋
opencv·物联网·毕业设计·esp32·鸿蒙系统·毕设·宠物
北青网快讯1 小时前
声网AI技术赋能,智能客服告别机械式应答
人工智能
机器之心1 小时前
TypeScript超越Python成GitHub上使用最广语言,AI是主要驱动力
人工智能·openai
nju_spy1 小时前
周志华《机器学习导论》第 15 章 规则学习(符号主义学习)
人工智能·机器学习·数理逻辑·序贯覆盖·规则学习·ripper·一阶规则学习