卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络

卷积四分类项目

Gitee传送门

分类目标选取

鲜花

  • 杏花 apricot_blossom
  • 桃花 peach_blossom
  • 梨花 pear_blossom
  • 梅花 plum_blossom

模型选择

卷积

  • LeNet5
  • VGG16
  • ResNet18
  • ResNet34

以图搜图

获取相似度前10的搜图结果

数据清洗

鲜花四分类

删除非图片文件

删除重复图片





整理数据集

鲜花四分类

每种类别数据:训练500、测试50、预测10

总训练集:2500

总测试集:250

总预测集:40

训练模型

报错

ValueError: num_samples should be a positive integer value, but got num_samples=0

换了电脑后,数据集的存储位置不同,更换路径后解决

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

原因:错误内容就在类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)

方案:将输入类型转变为GPU类型

输入数据和网络都切换到cuda,但问题仍存在

检查网络,修改模型隐藏层初始化方式后,解决了问题

鲜花

v1:LeNet5:bn

输出4分类



v2:VGG16:bn

数据太差,提前中断了训练


v3:ResNet18:bn

输出4分类
f4_v3:32x32



准确率仍上不去,预估增大迭代次数,准确率能慢慢提升

f4_v3.3:224x224


过拟合前最佳:

测试数据出现过拟合现象,考虑减小数据大小

f4_v3.4:112x112


过拟合前最佳:

再次出现过拟合,提前中断了训练

f4_v3.5:56x56


过拟合前最佳:

再次出现过拟合,提前中断了训练

结论:图片缩放大小无法解决过拟合问题

f4_v3.6:32x32,减4个残差块


测试集过拟合前

最佳

f4_v3.6:32x32,减4个残差块,transforms减Norm


测试集过拟合前

最佳

v4:ResNet34:bn

输出4分类



预估:增加迭代次数,可能能缓慢提升准确率

以图搜图

报错

ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 512, 1, 1])

LeNet5模型能正常运行,ResNet18和ResNet34模型报错
正常运行
报错
报错

原因:模型中含有nn.BatchNorm层,训练时需要batch_size大于1,来计算当前batch的running mean and std。自定义数据数量除以batch_size后刚好余1,就发生了上述报错

方案1:在pytorch的Dataloader中设置drop_last=True即可,这样会忽略最后一个batch

尝试在数据集增加drop_last=True,再次训练,尚未解决这个问题

方案2:在添加数据前增加model.eval()

代码原本就有这个语句,仍存在这个问题

方案3:修改训练模型数据预处理中Resize大小32-->224,问题解决

搜图结果

v1:LeNet5:bn


没有一个是正确分类

v3:ResNet18:bn

f4_v3:32x32


没有一个是正确分类,且相似度差距很大

f4_v3.3:224x224

过拟合前最佳:

预测最佳类别中top10图片和原图类别相同,但与top1图片与原图相似度不是0

原因:检索库图片根据特征处理、带参数的模型生成对应的特征文件,更换特征处理方式或参数后,生成的特征文件有所不同,所以计算相似度,哪怕是原图也不为0

解决方案:更换特征处理方式或参数后,重新初始化特征文件,再进行预测,解决了这个问题

v4:ResNet34:bn

f4_v4:32x32


没有一个是正确分类,且相似度差距很大

f4_v4.3:224x224


出现了一个正确分类,由于时间问题,v4.3版没有完成足够的训练,不确定迭代后的数据能否达到预期效果

特征处理

feat_v3.3.0:tensor

feat_v3.3.1:tensor+Resize56

feat_v3.3.2:tensor+Resize56+Norm

feat_v3.3.3:tensor+crop+Resize56

feat_v3.3.4:tensor+Resize+crop+Resize56

feat_v3.3.5:tensor+Resize+crop+Resize224

feat_v3.3.6:tensor+Resize+crop+Resize112

feat_v3.3.7:tensor+Resize+crop+Resize32

总结

feat_v3.3.4.txt版本的特征处理效果最好

特征处理方式:tensor+Resize600+crop400+Resize56

搜图效果

相似度前10的结果,top1是原图,6张正确类别花,3张错误类别花

原因:这四类花本身比较相似,不便于学习;也可能是数据量不够多,训练效果不够好;也可能迭代的次数不够多,模型没有训练到足够好的效果

相关推荐
lucky_lyovo38 分钟前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch43 分钟前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ2 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊2 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue3 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
焄塰3 小时前
Ansible 管理变量和事实
学习·centos·ansible
Code_流苏3 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3353 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩3 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉3 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测