代码随想录打卡day27&day28

回溯算法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

回溯三部曲:

  • 回溯函数模版返回值以及参数

    返回值一般为void,参数是需要什么填什么。伪代码如下:void backtracking(参数)

  • 回溯函数终止条件

cpp 复制代码
if (终止条件) {
    存放结果;
    return;
}
  • 回溯的遍历过程

回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

cpp 复制代码
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果
}

for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

2 组合问题

给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。

示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。

图中可以发现n相当于树的宽度,k相当于树的深度。

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果。

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

cpp 复制代码
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

所以需要startIndex来记录下一层递归,搜索的起始位置。

cpp 复制代码
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)
  • 回溯函数终止条件

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

此时用result二维数组,把path保存起来,并终止本层递归。

cpp 复制代码
if (path.size() == k) {
    result.push_back(path);
    return;
}
  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

cpp 复制代码
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
    path.push_back(i); // 处理节点
    backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
    path.pop_back(); // 回溯,撤销处理的节点
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

cpp 复制代码
class Solution {
private:
    vector<vector<int>> result; // 存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1); // 递归
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        result.clear(); // 可以不写
        path.clear();   // 可以不写
        backtracking(n, k, 1);
        return result;
    }
};

3 组合总和

找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

说明:

所有数字都是正整数。

解集不能包含重复的组合。

示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]

示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]

本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

  • 确定递归函数参数

和 组合 (opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。

这里我依然定义path 和 result为全局变量。

至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。

cpp 复制代码
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果

接下来还需要如下参数:

  • targetSum(int)目标和,也就是题目中的n。
  • k(int)就是题目中要求k个数的集合。
  • sum(int)为已经收集的元素的总和,也就是path里元素的总和。
  • startIndex(int)为下一层for循环搜索的起始位置。
cpp 复制代码
void backtracking(int targetSum, int k, int sum, int startIndex)
  • 确定终止条件
    k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。

所以如果path.size() 和 k相等了,就终止。

如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

cpp 复制代码
if (path.size() == k) {
    if (sum == targetSum) result.push_back(path);
    return; // 如果path.size() == k 但sum != targetSum 直接返回
}
  • 单层搜索过程

处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。

cpp 复制代码
for (int i = startIndex; i <= 9; i++) {
    sum += i;
    path.push_back(i);
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}

剪支处理

已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。

那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:

cpp 复制代码
if (sum > targetSum) { // 剪枝操作
    return;
}

当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。

cpp 复制代码
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
    sum += i; // 处理
    path.push_back(i); // 处理
    if (sum > targetSum) { // 剪枝操作
        sum -= i; // 剪枝之前先把回溯做了
        path.pop_back(); // 剪枝之前先把回溯做了
        return;
    }
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}
相关推荐
Kenneth風车17 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
最后一个bug21 分钟前
rt-linux中使用mlockall与free的差异
linux·c语言·arm开发·单片机·嵌入式硬件·算法
蹉跎x1 小时前
力扣1358. 包含所有三种字符的子字符串数目
数据结构·算法·leetcode·职场和发展
rainoway2 小时前
CRDT宝典 - yata算法
前端·分布式·算法
坊钰2 小时前
【Java 数据结构】移除链表元素
java·开发语言·数据结构·学习·链表
巫师不要去魔法部乱说2 小时前
PyCharm专项训练4 最小生成树算法
算法·pycharm
IT猿手3 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解GLSMOP1-GLSMOP9及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·算法·机器学习·matlab·强化学习
阿七想学习3 小时前
数据结构《排序》
java·数据结构·学习·算法·排序算法
王老师青少年编程3 小时前
gesp(二级)(12)洛谷:B3955:[GESP202403 二级] 小杨的日字矩阵
c++·算法·矩阵·gesp·csp·信奥赛
Kenneth風车3 小时前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)111
算法·机器学习·分类