Python嵌套绘图并为条形图添加自定义标注

论文绘图时经常需要多图嵌套,正好最近绘图用到了,记录一下使用Python实现多图嵌套的过程。

首先,实现 Seaborn 分别绘制折线图和柱状图。

|---|--------------------------------------------------------------------------------------------------|
| | '''绘制折线图''' |
| | import seaborn as sns |
| | import matplotlib.pyplot as plt |
| | import warnings |
| | warnings.filterwarnings("ignore", "use_inf_as_na") |
| | |
| | # 获取绘图数据 |
| | df_fmri=sns.load_dataset("fmri") |
| | # 绘制折线图 |
| | sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event") |
| | |
| | # 创建绘图数据 |
| | df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index() |
| | # 绘制条形图 |
| | ax_bar=sns.barplot( |
| | data=df_bar, |
| | x="subject", y="signal", |
| | palette='Set2', |
| | ) |

接下来实现条形图与折线图的嵌套,核心是使用 inset_axes 函数创建一个新的轴,然后再绘制第二个图时指定绘图的轴为刚才新建的轴。

|---|--------------------------------------------------------------------------------------------------|
| | from mpl_toolkits.axes_grid1.inset_locator import inset_axes |
| | import matplotlib.pyplot as plt |
| | |
| | # 获取绘图数据 |
| | df_fmri = sns.load_dataset("fmri") |
| | df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index() |
| | |
| | # 绘制折线图 |
| | ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event") |
| | plt.legend(loc='upper left') |
| | |
| | # 使用 inset_axes 函数添加一个轴,用来显示条形图 |
| | ax_bar = inset_axes( |
| | ax, # 父轴 |
| | width='40%', height='50%', # 新轴相对于父轴的长宽比例 |
| | loc='lower left', # 新轴的锚点相对于父轴的位置 |
| | bbox_to_anchor=(0.55,0.45,1,1), # 新轴的bbox |
| | bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准 |
| | ) |
| | # 绘制条形图 |
| | ax_bar=sns.barplot( |
| | data=df_bar, |
| | x="subject", y="signal", |
| | palette='Set2', |
| | ax=ax_bar |
| | ) |

可以看到,右上角的条形图显得很拥挤,x轴标注相互重叠比较严重,因此,考虑将条形图由纵向变为横向,在 Seaborn 绘图时交换 x 轴和 y 轴就能实现。此外,bar上方的空间也比较大,考虑将x轴的标注标注到bar上方,以进一步节约空间。bar的标注可以通过 ax.bar_label() 函数实现,该函数不仅可以直接标注每个bar的数值,也可以自定义要标注的内容和格式。修改后的代码和结果图如下:

|---|--------------------------------------------------------------------------------------------------|
| | from mpl_toolkits.axes_grid1.inset_locator import inset_axes |
| | import matplotlib.pyplot as plt |
| | |
| | # 准备数据 |
| | df_fmri = sns.load_dataset("fmri") |
| | df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index() |
| | |
| | # 绘制折线图 |
| | ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event") |
| | plt.legend(loc='upper left') |
| | |
| | # 使用 inset_axes 函数添加一个轴,用来显示条形图 |
| | ax_bar = inset_axes( |
| | ax, # 父轴 |
| | width='47%', height='52%', # 新轴相对于父轴的长宽比例 |
| | loc='lower left', # 新轴的锚点相对于父轴的位置 |
| | bbox_to_anchor=(0.5,0.44,1,1), # 新轴的bbox |
| | bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准 |
| | ) |
| | # 绘制条形图 |
| | ax_bar=sns.barplot( |
| | data=df_bar, |
| | # 交换 x 轴和 y 轴列名实现横向条形图 |
| | x="signal", y="subject", |
| | palette='Set2', |
| | ax=ax_bar |
| | ) |
| | # 使用 sns 的 bar_label 函数为条形图添加标注 |
| | ax_bar.bar_label( |
| | ax_bar.containers[0], # 条形图的 BarContainer 对象 |
| | labels=df_bar['subject'], # 要标注的labels,默认为 bar 的数值,此处传入自定义的label序列 |
| | label_type='edge', # 标注显示的位置,可选 edge 或 center |
| | padding=2, # 标注与bar之间的距离 |
| | # fmt='%.2f' # 标注格式化字符串 |
| | fontsize=10 # 设置标注的字体大小 |
| | ) |
| | # 为了避免标注超出绘图范围,将x轴的绘图范围扩大 |
| | plt.xlim(0,0.62) |
| | # 隐藏左侧y轴 |
| | ax_bar.yaxis.set_visible(False) |
| | # 去除多余的轴线 |
| | sns.despine() |

相关推荐
小徐敲java1 小时前
python使用s7协议与plc进行数据通讯(HslCommunication模拟)
开发语言·python
猫头虎1 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
笨蛋少年派1 小时前
跨境电商大数据分析系统案例:③建模、分析与暂时收尾
hive·数据挖掘·数据分析
p***23361 小时前
python的sql解析库-sqlparse
数据库·python·sql
陈奕昆1 小时前
n8n实战营Day1课时3:高频节点解析+Webhook表单同步Excel实操
人工智能·python·n8n
德彪稳坐倒骑驴1 小时前
Power BI
信息可视化·powerbi
Cisyam^1 小时前
openGauss + LangChain Agent实战:从自然语言到SQL的智能数据分析助手
sql·数据分析·langchain
深蓝电商API1 小时前
动态 Token、加密参数逆向全流程:从原理到实战破解
爬虫·python
qq_17082750 CNC注塑机数采1 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
java1234_小锋1 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 切割车牌矩阵获取车牌字符
python·深度学习·cnn·车牌识别