How to Calibrate a Camera with OpenCV?

How to Calibrate a Camera with OpenCV: A Complete Guide

Welcome to our tutorial on camera calibration using OpenCV, a powerful tool in computer vision applications, particularly in the fields of robotics and augmented reality. In this blog, we will walk through the process of extracting frames from a video, detecting checkerboard patterns (used for calibration), and finally, calibrating the camera.

What is Camera Calibration?

Camera calibration is the process of estimating the parameters of the lens and the image sensor of a camera to improve the accuracy of capturing images. These parameters can be used to correct lens distortion, measure the size of an object in the world units, or determine the location of the camera in the scene.

The Code Breakdown

Our Python script uses OpenCV to perform camera calibration with the following steps:

  1. Extract Frames from a Video
  2. Find Checkerboard Corners
  3. Calibrate the Camera
1. Extract Frames from a Video

The function extract_frames reads a video file and extracts frames at a specified interval (skip_frames).

python 复制代码
def extract_frames(video_path, skip_frames=30):
    cap = cv2.VideoCapture(video_path)
    frames = []
    idx = 0
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if idx % skip_frames == 0:
            frames.append(frame)
        idx += 1
    
    cap.release()
    return frames
2. Find Checkerboard Corners

We use the find_checkerboard_corners function to detect the corners of a checkerboard pattern in each frame. This pattern is crucial for calibration as it provides a known geometry to compare against.

python 复制代码
def find_checkerboard_corners(frames, checkerboard_size=(9, 13)):
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objpoints = []
    imgpoints = []
    
    objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
    objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2)

    for _, frame in enumerate(tqdm(frames)):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
        
        if ret:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners2)
    
    return objpoints, imgpoints, gray.shape[::-1]
3. Calibrate the Camera

With the object and image points obtained from the checkerboard, the calibrate_camera function estimates the camera parameters.

python 复制代码
def calibrate_camera(objpoints, imgpoints, frame_shape):
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_shape, None, None)
    return mtx, dist

Conclusion

Once the calibration is done, the camera matrix and distortion coefficients are printed. These parameters allow you to correct images taken from this camera, enhance accuracy in measurement applications, and perform numerous other computer vision tasks.

Camera calibration is a fundamental step in any serious computer vision work. By accurately determining the camera's intrinsic and extrinsic parameters, one can significantly improve the output and accuracy of their vision algorithms. Whether you're developing a robot's vision system or creating a 3D model from images, understanding how to calibrate a camera is essential.

Feel free to use this code as a starting point for your camera calibration needs and adapt it to different patterns or calibration methods as required.

Sample Code

python 复制代码
import cv2
import numpy as np
from tqdm import tqdm

def extract_frames(video_path, skip_frames=30):
    """ Extract frames from a video file """
    cap = cv2.VideoCapture(video_path)
    frames = []
    idx = 0
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if idx % skip_frames == 0:
            frames.append(frame)
        idx += 1
    
    cap.release()
    return frames

def find_checkerboard_corners(frames, checkerboard_size=(9, 13)):
    """ Find and refine checkerboard corners in a list of frames """
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objpoints = []  # 3D points in real world space
    imgpoints = []  # 2D points in image plane
    
    objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
    objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2)

    for _,frame in enumerate(tqdm(frames)):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
        
        if ret:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners2)
    
    return objpoints, imgpoints, gray.shape[::-1]

def calibrate_camera(objpoints, imgpoints, frame_shape):
    """ Calibrate the camera given object points, image points, and the shape of the frames """
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_shape, None, None)
    return mtx, dist

# Path to your video file
video_path = '20240509_155345.mp4'

# Extract frames from the video
frames = extract_frames(video_path, skip_frames=10)
print("frames: ",len(frames))

# Find checkerboard corners
objpoints, imgpoints, frame_shape = find_checkerboard_corners(frames)
print('valid frames: ', len(objpoints))

# Calibrate the camera
camera_matrix, dist_coeffs = calibrate_camera(objpoints, imgpoints, frame_shape)

# camera_matrix = np.round(camera_matrix,8)
# dist_coeffs = np.round(dist_coeffs, 8)
print("Camera matrix:")
print(camera_matrix)
print("Distortion coefficients:")
print(dist_coeffs)

cal_param=f'''
Camera1.fx: {camera_matrix[0,0]:.8f}
Camera1.fy: {camera_matrix[1,1]:.8f}
Camera1.cx: {camera_matrix[0,2]:.8f}
Camera1.cy: {camera_matrix[1,2]:.8f}

Camera1.k1: {dist_coeffs[0,0]:.8f}
Camera1.k2: {dist_coeffs[0,1]:.8f}
Camera1.p1: {dist_coeffs[0,2]:.8f}
Camera1.p2: {dist_coeffs[0,3]:.8f}
Camera1.k3: {dist_coeffs[0,4]:.8f}
'''
print(cal_param)

Checkerboards Download

https://markhedleyjones.com/projects/calibration-checkerboard-collection

相关推荐
阿坡RPA3 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049933 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心3 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c6 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2056 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清6 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh7 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员7 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物7 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技