How to Calibrate a Camera with OpenCV?

How to Calibrate a Camera with OpenCV: A Complete Guide

Welcome to our tutorial on camera calibration using OpenCV, a powerful tool in computer vision applications, particularly in the fields of robotics and augmented reality. In this blog, we will walk through the process of extracting frames from a video, detecting checkerboard patterns (used for calibration), and finally, calibrating the camera.

What is Camera Calibration?

Camera calibration is the process of estimating the parameters of the lens and the image sensor of a camera to improve the accuracy of capturing images. These parameters can be used to correct lens distortion, measure the size of an object in the world units, or determine the location of the camera in the scene.

The Code Breakdown

Our Python script uses OpenCV to perform camera calibration with the following steps:

  1. Extract Frames from a Video
  2. Find Checkerboard Corners
  3. Calibrate the Camera
1. Extract Frames from a Video

The function extract_frames reads a video file and extracts frames at a specified interval (skip_frames).

python 复制代码
def extract_frames(video_path, skip_frames=30):
    cap = cv2.VideoCapture(video_path)
    frames = []
    idx = 0
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if idx % skip_frames == 0:
            frames.append(frame)
        idx += 1
    
    cap.release()
    return frames
2. Find Checkerboard Corners

We use the find_checkerboard_corners function to detect the corners of a checkerboard pattern in each frame. This pattern is crucial for calibration as it provides a known geometry to compare against.

python 复制代码
def find_checkerboard_corners(frames, checkerboard_size=(9, 13)):
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objpoints = []
    imgpoints = []
    
    objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
    objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2)

    for _, frame in enumerate(tqdm(frames)):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
        
        if ret:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners2)
    
    return objpoints, imgpoints, gray.shape[::-1]
3. Calibrate the Camera

With the object and image points obtained from the checkerboard, the calibrate_camera function estimates the camera parameters.

python 复制代码
def calibrate_camera(objpoints, imgpoints, frame_shape):
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_shape, None, None)
    return mtx, dist

Conclusion

Once the calibration is done, the camera matrix and distortion coefficients are printed. These parameters allow you to correct images taken from this camera, enhance accuracy in measurement applications, and perform numerous other computer vision tasks.

Camera calibration is a fundamental step in any serious computer vision work. By accurately determining the camera's intrinsic and extrinsic parameters, one can significantly improve the output and accuracy of their vision algorithms. Whether you're developing a robot's vision system or creating a 3D model from images, understanding how to calibrate a camera is essential.

Feel free to use this code as a starting point for your camera calibration needs and adapt it to different patterns or calibration methods as required.

Sample Code

python 复制代码
import cv2
import numpy as np
from tqdm import tqdm

def extract_frames(video_path, skip_frames=30):
    """ Extract frames from a video file """
    cap = cv2.VideoCapture(video_path)
    frames = []
    idx = 0
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if idx % skip_frames == 0:
            frames.append(frame)
        idx += 1
    
    cap.release()
    return frames

def find_checkerboard_corners(frames, checkerboard_size=(9, 13)):
    """ Find and refine checkerboard corners in a list of frames """
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objpoints = []  # 3D points in real world space
    imgpoints = []  # 2D points in image plane
    
    objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
    objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2)

    for _,frame in enumerate(tqdm(frames)):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
        
        if ret:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners2)
    
    return objpoints, imgpoints, gray.shape[::-1]

def calibrate_camera(objpoints, imgpoints, frame_shape):
    """ Calibrate the camera given object points, image points, and the shape of the frames """
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_shape, None, None)
    return mtx, dist

# Path to your video file
video_path = '20240509_155345.mp4'

# Extract frames from the video
frames = extract_frames(video_path, skip_frames=10)
print("frames: ",len(frames))

# Find checkerboard corners
objpoints, imgpoints, frame_shape = find_checkerboard_corners(frames)
print('valid frames: ', len(objpoints))

# Calibrate the camera
camera_matrix, dist_coeffs = calibrate_camera(objpoints, imgpoints, frame_shape)

# camera_matrix = np.round(camera_matrix,8)
# dist_coeffs = np.round(dist_coeffs, 8)
print("Camera matrix:")
print(camera_matrix)
print("Distortion coefficients:")
print(dist_coeffs)

cal_param=f'''
Camera1.fx: {camera_matrix[0,0]:.8f}
Camera1.fy: {camera_matrix[1,1]:.8f}
Camera1.cx: {camera_matrix[0,2]:.8f}
Camera1.cy: {camera_matrix[1,2]:.8f}

Camera1.k1: {dist_coeffs[0,0]:.8f}
Camera1.k2: {dist_coeffs[0,1]:.8f}
Camera1.p1: {dist_coeffs[0,2]:.8f}
Camera1.p2: {dist_coeffs[0,3]:.8f}
Camera1.k3: {dist_coeffs[0,4]:.8f}
'''
print(cal_param)

Checkerboards Download

https://markhedleyjones.com/projects/calibration-checkerboard-collection

相关推荐
悟空胆好小1 分钟前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件
探讨探讨AGV1 分钟前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人
cwn_19 分钟前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
聚客AI1 小时前
🔥 大模型开发进阶:基于LangChain的异步流式响应与性能优化
人工智能·langchain·agent
CareyWYR1 小时前
每周AI论文速递(250707-250711)
人工智能
AI街潜水的八角1 小时前
深度学习图像分类数据集—五种电器识别分类
人工智能·深度学习·分类
众链网络1 小时前
AI进化论08:机器学习的崛起——数据和算法的“二人转”,AI“闷声发大财”
人工智能·算法·机器学习
生命是有光的1 小时前
【机器学习】机器学习基础
人工智能·机器学习
平和男人杨争争1 小时前
机器学习13——支持向量机下
人工智能·机器学习·支持向量机
胖达不服输1 小时前
「日拱一码」025 机器学习——评价指标
人工智能·python·机器学习·评价指标