How to Calibrate a Camera with OpenCV?

How to Calibrate a Camera with OpenCV: A Complete Guide

Welcome to our tutorial on camera calibration using OpenCV, a powerful tool in computer vision applications, particularly in the fields of robotics and augmented reality. In this blog, we will walk through the process of extracting frames from a video, detecting checkerboard patterns (used for calibration), and finally, calibrating the camera.

What is Camera Calibration?

Camera calibration is the process of estimating the parameters of the lens and the image sensor of a camera to improve the accuracy of capturing images. These parameters can be used to correct lens distortion, measure the size of an object in the world units, or determine the location of the camera in the scene.

The Code Breakdown

Our Python script uses OpenCV to perform camera calibration with the following steps:

  1. Extract Frames from a Video
  2. Find Checkerboard Corners
  3. Calibrate the Camera
1. Extract Frames from a Video

The function extract_frames reads a video file and extracts frames at a specified interval (skip_frames).

python 复制代码
def extract_frames(video_path, skip_frames=30):
    cap = cv2.VideoCapture(video_path)
    frames = []
    idx = 0
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if idx % skip_frames == 0:
            frames.append(frame)
        idx += 1
    
    cap.release()
    return frames
2. Find Checkerboard Corners

We use the find_checkerboard_corners function to detect the corners of a checkerboard pattern in each frame. This pattern is crucial for calibration as it provides a known geometry to compare against.

python 复制代码
def find_checkerboard_corners(frames, checkerboard_size=(9, 13)):
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objpoints = []
    imgpoints = []
    
    objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
    objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2)

    for _, frame in enumerate(tqdm(frames)):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
        
        if ret:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners2)
    
    return objpoints, imgpoints, gray.shape[::-1]
3. Calibrate the Camera

With the object and image points obtained from the checkerboard, the calibrate_camera function estimates the camera parameters.

python 复制代码
def calibrate_camera(objpoints, imgpoints, frame_shape):
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_shape, None, None)
    return mtx, dist

Conclusion

Once the calibration is done, the camera matrix and distortion coefficients are printed. These parameters allow you to correct images taken from this camera, enhance accuracy in measurement applications, and perform numerous other computer vision tasks.

Camera calibration is a fundamental step in any serious computer vision work. By accurately determining the camera's intrinsic and extrinsic parameters, one can significantly improve the output and accuracy of their vision algorithms. Whether you're developing a robot's vision system or creating a 3D model from images, understanding how to calibrate a camera is essential.

Feel free to use this code as a starting point for your camera calibration needs and adapt it to different patterns or calibration methods as required.

Sample Code

python 复制代码
import cv2
import numpy as np
from tqdm import tqdm

def extract_frames(video_path, skip_frames=30):
    """ Extract frames from a video file """
    cap = cv2.VideoCapture(video_path)
    frames = []
    idx = 0
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if idx % skip_frames == 0:
            frames.append(frame)
        idx += 1
    
    cap.release()
    return frames

def find_checkerboard_corners(frames, checkerboard_size=(9, 13)):
    """ Find and refine checkerboard corners in a list of frames """
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    objpoints = []  # 3D points in real world space
    imgpoints = []  # 2D points in image plane
    
    objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
    objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2)

    for _,frame in enumerate(tqdm(frames)):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
        
        if ret:
            objpoints.append(objp)
            corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners2)
    
    return objpoints, imgpoints, gray.shape[::-1]

def calibrate_camera(objpoints, imgpoints, frame_shape):
    """ Calibrate the camera given object points, image points, and the shape of the frames """
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_shape, None, None)
    return mtx, dist

# Path to your video file
video_path = '20240509_155345.mp4'

# Extract frames from the video
frames = extract_frames(video_path, skip_frames=10)
print("frames: ",len(frames))

# Find checkerboard corners
objpoints, imgpoints, frame_shape = find_checkerboard_corners(frames)
print('valid frames: ', len(objpoints))

# Calibrate the camera
camera_matrix, dist_coeffs = calibrate_camera(objpoints, imgpoints, frame_shape)

# camera_matrix = np.round(camera_matrix,8)
# dist_coeffs = np.round(dist_coeffs, 8)
print("Camera matrix:")
print(camera_matrix)
print("Distortion coefficients:")
print(dist_coeffs)

cal_param=f'''
Camera1.fx: {camera_matrix[0,0]:.8f}
Camera1.fy: {camera_matrix[1,1]:.8f}
Camera1.cx: {camera_matrix[0,2]:.8f}
Camera1.cy: {camera_matrix[1,2]:.8f}

Camera1.k1: {dist_coeffs[0,0]:.8f}
Camera1.k2: {dist_coeffs[0,1]:.8f}
Camera1.p1: {dist_coeffs[0,2]:.8f}
Camera1.p2: {dist_coeffs[0,3]:.8f}
Camera1.k3: {dist_coeffs[0,4]:.8f}
'''
print(cal_param)

Checkerboards Download

https://markhedleyjones.com/projects/calibration-checkerboard-collection

相关推荐
物联网软硬件开发-轨物科技2 分钟前
【轨物洞见】告别“被动维修”!预测性运维如何重塑老旧电站的资产价值?
运维·人工智能
电商API_180079052472 分钟前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
梁辰兴16 分钟前
百亿美元赌注变数,AI军备竞赛迎来转折点?
人工智能·ai·大模型·openai·英伟达·梁辰兴·ai军备竞赛
PaperRed ai写作降重助手18 分钟前
智能写作ai论文生成软件推荐
人工智能·aigc·ai写作·智能降重·paperred
龙山云仓21 分钟前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
IT·小灰灰1 小时前
30行PHP,利用硅基流动API,网页客服瞬间上线
开发语言·人工智能·aigc·php
新缸中之脑1 小时前
编码代理的未来
人工智能
Anarkh_Lee1 小时前
【小白也能实现智能问数智能体】使用开源的universal-db-mcp在coze中实现问数 AskDB智能体
数据库·人工智能·ai·开源·ai编程
John_ToDebug1 小时前
2026年展望:在技术涌现时代构筑确定性
人工智能·程序人生
AndyHeee2 小时前
【windows使用TensorFlow,GPU无法识别问题汇总,含TensorFlow完整安装过程】
人工智能·windows·tensorflow