深度学习感悟

我觉得万事万物都逃不过y=f(x)这个关系,输入在某种法则作用下变成了输出,这个用来理解宇宙,就是我们知道宇宙的现状,就是y,知道自然法则,就是f,我们不知道的是x,其实深度学习也是如此,模型要找的是f,通过不断减小预测和真实值的 损失来找最好的w和b,而这个就是f,最好的f应该是方之四海而皆准的,而且深度学习中很多都是分类问题,图像分类,文本分类是分类,图像分割也可以看成分类,是对像素的分类,还有翻译,就是预测下一个字的概率分布,也是分类,看这个词元属于词汇表中的哪一个,图片可以看成序列,因为它是由像素值有序排成的,文本就是序列,所谓词嵌入就是为单个词元用数学向量表示,这样可以把这些问题归结为一个东西y=f(x),输入都是实际事物的抽象,是实际事物的数字表示,已知的是输入和结果,要找的是f,我们用损失来引导模型学习,模型在减小损失的过程中,逐渐接近本质,我之所以说翻译是分类,是因为模型要预测的是当前词元是词汇表中的那个词,就是一个词汇表大小的分类,最重要的是建摸,抽象出有用的数据

相关推荐
音视频牛哥18 分钟前
灰度图像和RGB图像在数据大小和编码处理方式差别
人工智能·深度学习·计算机视觉·大牛直播sdk·灰度图像·灰度图像编码·rgb和灰度图像差别
深度学习机器学习23 分钟前
计算机视觉最不卷的方向:三维重建学习路线梳理
人工智能·深度学习·学习·yolo·目标检测·机器学习·计算机视觉
林泽毅32 分钟前
PaddleNLP框架训练模型:使用SwanLab教程
人工智能·深度学习·机器学习·大模型·paddlepaddle·模型训练·swanlab
終不似少年遊*2 小时前
MindSpore框架学习项目-ResNet药物分类-数据增强
人工智能·深度学习·分类·数据挖掘·华为云·resnet·modelart
Rachelhi3 小时前
C++.神经网络与深度学习(赶工版)(会二次修改)
c++·深度学习·神经网络
徐行tag3 小时前
深度学习基础
人工智能·深度学习
Mr.Winter`6 小时前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
强盛小灵通专卖员6 小时前
分类分割详细指标说明
人工智能·深度学习·算法·机器学习
沅_Yuan13 小时前
基于小波神经网络(WNN)的回归预测模型【MATLAB】
深度学习·神经网络·matlab·回归·小波神经网络·wnn
视觉语言导航13 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能