深度学习感悟

我觉得万事万物都逃不过y=f(x)这个关系,输入在某种法则作用下变成了输出,这个用来理解宇宙,就是我们知道宇宙的现状,就是y,知道自然法则,就是f,我们不知道的是x,其实深度学习也是如此,模型要找的是f,通过不断减小预测和真实值的 损失来找最好的w和b,而这个就是f,最好的f应该是方之四海而皆准的,而且深度学习中很多都是分类问题,图像分类,文本分类是分类,图像分割也可以看成分类,是对像素的分类,还有翻译,就是预测下一个字的概率分布,也是分类,看这个词元属于词汇表中的哪一个,图片可以看成序列,因为它是由像素值有序排成的,文本就是序列,所谓词嵌入就是为单个词元用数学向量表示,这样可以把这些问题归结为一个东西y=f(x),输入都是实际事物的抽象,是实际事物的数字表示,已知的是输入和结果,要找的是f,我们用损失来引导模型学习,模型在减小损失的过程中,逐渐接近本质,我之所以说翻译是分类,是因为模型要预测的是当前词元是词汇表中的那个词,就是一个词汇表大小的分类,最重要的是建摸,抽象出有用的数据

相关推荐
free-elcmacom4 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
算法与编程之美4 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
哥布林学者6 小时前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (三)交并比、非极大值抑制和锚框
深度学习·ai
Coding茶水间8 小时前
基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
有为少年9 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
Ven%10 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
阿_旭10 小时前
【PyTorch】20个核心概念详解:从基础到实战的深度学习指南
人工智能·pytorch·深度学习
机器学习之心12 小时前
一张Transformer-LSTM模型的结构图
深度学习·lstm·transformer
Blossom.11812 小时前
AI边缘计算实战:基于MNN框架的手机端文生图引擎实现
人工智能·深度学习·yolo·目标检测·智能手机·边缘计算·mnn
胡伯来了12 小时前
09 Transformers - 训练
人工智能·pytorch·深度学习·transformer·transformers