我觉得万事万物都逃不过y=f(x)这个关系,输入在某种法则作用下变成了输出,这个用来理解宇宙,就是我们知道宇宙的现状,就是y,知道自然法则,就是f,我们不知道的是x,其实深度学习也是如此,模型要找的是f,通过不断减小预测和真实值的 损失来找最好的w和b,而这个就是f,最好的f应该是方之四海而皆准的,而且深度学习中很多都是分类问题,图像分类,文本分类是分类,图像分割也可以看成分类,是对像素的分类,还有翻译,就是预测下一个字的概率分布,也是分类,看这个词元属于词汇表中的哪一个,图片可以看成序列,因为它是由像素值有序排成的,文本就是序列,所谓词嵌入就是为单个词元用数学向量表示,这样可以把这些问题归结为一个东西y=f(x),输入都是实际事物的抽象,是实际事物的数字表示,已知的是输入和结果,要找的是f,我们用损失来引导模型学习,模型在减小损失的过程中,逐渐接近本质,我之所以说翻译是分类,是因为模型要预测的是当前词元是词汇表中的那个词,就是一个词汇表大小的分类,最重要的是建摸,抽象出有用的数据
相关推荐
哥布林学者4 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(五)GloVe 算法kuiini4 小时前
模型转换、加速与推理优化【Plan 8】Quintus五等升5 小时前
深度学习④|分类任务—VGG13全栈开发圈7 小时前
干货分享|深度学习计算的FPGA优化思路老鱼说AI8 小时前
论文精读第七期:告别昂贵的人工标注!Math-Shepherd:如何用“零成本”自动化过程监督,让大模型数学能力暴涨?抠头专注python环境配置8 小时前
基于Python与深度学习的智能垃圾分类系统设计与实现梦想是成为算法高手9 小时前
带你从入门到精通——知识图谱(一. 知识图谱入门)棒棒的皮皮9 小时前
【深度学习】YOLO学习教程汇总地理探险家10 小时前
【YOLOv8 农业实战】11 组大豆 + 棉花深度学习数据集分享|附格式转换 + 加载代码TonyLee01710 小时前
半监督学习介绍