mapreduce | 自定义Partition分区(案例1)

1.需求

将学生成绩,按照各个成绩降序排序,各个科目成绩单独输出。
# 自定义partition 将下面数据分区处理:

人名 科目 成绩

张三 语文 10

李四 数学 30

王五 语文 20

赵6 英语 40

张三 数据 50

李四 语文 10

张三 英语 70

李四 英语 80

王五 英语 45

王五 数学 10

赵6 数学 10

赵6 语文 100

2.思路分析

# 自定义分区

1. 编写自定义分区类,继承Partitioner覆盖getPartition方法 注意:分区号从0开始算。

2. 给job注册分区类 【覆盖默认分区】 job.setPartitionerClass(自定义Partitioner.class); 3. 设置ReduceTask个数(开启分区) job.setNumReduceTasks(数字);//reduceTask数量要和分区数量一样。

3.Idea代码

DefinePartitionJob

java 复制代码
package demo7;

import demo5.DescIntWritable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import java.io.IOException;

public class DefinePartitionJob {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        Configuration conf = new Configuration();
        conf.set("fs.defaultFS","hdfs://hadoop10:8020");

        Job job = Job.getInstance(conf);
        job.setJarByClass(DefinePartitionJob.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        TextInputFormat.addInputPath(job,new Path("/mapreduce/demo10"));
        TextOutputFormat.setOutputPath(job,new Path("/mapreduce/demo10/out"));

        job.setMapperClass(DefinePartitonMapper.class);
        job.setReducerClass(DefinePartitonReducer.class);
        //map输出的键与值类型
        job.setMapOutputKeyClass(DescIntWritable.class);
        job.setMapOutputValueClass(Subject.class);
        //reducer输出的键与值类型
        job.setOutputKeyClass(Subject.class);
        job.setOutputValueClass(DescIntWritable.class);

        //设置reduceTask的个数
        job.setNumReduceTasks(4);
        //设置自定义分区
        job.setPartitionerClass(MyPartition.class);

        boolean b = job.waitForCompletion(true);
        System.out.println(b);

    }


    static class DefinePartitonMapper extends Mapper<LongWritable, Text, DescIntWritable,Subject> {
        @Override
        protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
            String[] arr = value.toString().split("\t");
            context.write(new DescIntWritable(Integer.parseInt(arr[2])),new Subject(arr[0],arr[1]));
        }
    }
    static class DefinePartitonReducer extends Reducer<DescIntWritable,Subject,Subject,DescIntWritable> {
        @Override
        protected void reduce(DescIntWritable key, Iterable<Subject> values, Context context) throws IOException, InterruptedException {
            for (Subject subject : values) {
                context.write(subject, key);
            }
        }
    }}

MyPartition

java 复制代码
package demo7;

import demo5.DescIntWritable;
import org.apache.hadoop.mapreduce.Partitioner;

public class MyPartition extends Partitioner<DescIntWritable,Subject> {
    @Override
    public int getPartition(DescIntWritable key, Subject value, int numPartitions) {
        if ("语文".equals(value.getKemu())){
            return 0;
        }else if ("数学".equals(value.getKemu())) {
            return 1;
        }else if ("英语".equals(value.getKemu())) {
            return 2;
        }
            return 3;


        }
}

Subject

java 复制代码
package demo7;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class Subject implements Writable{
    private String name;
    private String kemu;

    public Subject() {
    }

    public Subject(String name, String kemu) {
        this.name = name;
        this.kemu = kemu;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getKemu() {
        return kemu;
    }

    public void setKemu(String kemu) {
        this.kemu = kemu;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(name);
        out.writeUTF(kemu);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.name = in.readUTF();
        this.kemu = in.readUTF();

    }

    @Override
    public String toString() {
        return name + " " +kemu;
    }
}

4.在hdfs查看结果


不要去争辩,多提升自己~

相关推荐
sunxinyu2 小时前
曲面/线 拟合gnuplot
大数据·线性回归·数据处理·数据拟合·二维三维空间数据
专注API从业者2 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
淡酒交魂4 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
mask哥4 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
TDengine (老段)4 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
livemetee5 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink
zhang98800006 小时前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
老蒋新思维6 小时前
存量竞争下的破局之道:品牌与IP的双引擎策略|创客匠人
大数据·网络·知识付费·创客匠人·知识变现
Lx3527 小时前
Hadoop日志分析实战:快速定位问题的技巧
大数据·hadoop
喂完待续10 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache