mapreduce | 自定义Partition分区(案例1)

1.需求

将学生成绩,按照各个成绩降序排序,各个科目成绩单独输出。
# 自定义partition 将下面数据分区处理:

人名 科目 成绩

张三 语文 10

李四 数学 30

王五 语文 20

赵6 英语 40

张三 数据 50

李四 语文 10

张三 英语 70

李四 英语 80

王五 英语 45

王五 数学 10

赵6 数学 10

赵6 语文 100

2.思路分析

# 自定义分区

1. 编写自定义分区类,继承Partitioner覆盖getPartition方法 注意:分区号从0开始算。

2. 给job注册分区类 【覆盖默认分区】 job.setPartitionerClass(自定义Partitioner.class); 3. 设置ReduceTask个数(开启分区) job.setNumReduceTasks(数字);//reduceTask数量要和分区数量一样。

3.Idea代码

DefinePartitionJob

java 复制代码
package demo7;

import demo5.DescIntWritable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import java.io.IOException;

public class DefinePartitionJob {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        Configuration conf = new Configuration();
        conf.set("fs.defaultFS","hdfs://hadoop10:8020");

        Job job = Job.getInstance(conf);
        job.setJarByClass(DefinePartitionJob.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        TextInputFormat.addInputPath(job,new Path("/mapreduce/demo10"));
        TextOutputFormat.setOutputPath(job,new Path("/mapreduce/demo10/out"));

        job.setMapperClass(DefinePartitonMapper.class);
        job.setReducerClass(DefinePartitonReducer.class);
        //map输出的键与值类型
        job.setMapOutputKeyClass(DescIntWritable.class);
        job.setMapOutputValueClass(Subject.class);
        //reducer输出的键与值类型
        job.setOutputKeyClass(Subject.class);
        job.setOutputValueClass(DescIntWritable.class);

        //设置reduceTask的个数
        job.setNumReduceTasks(4);
        //设置自定义分区
        job.setPartitionerClass(MyPartition.class);

        boolean b = job.waitForCompletion(true);
        System.out.println(b);

    }


    static class DefinePartitonMapper extends Mapper<LongWritable, Text, DescIntWritable,Subject> {
        @Override
        protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
            String[] arr = value.toString().split("\t");
            context.write(new DescIntWritable(Integer.parseInt(arr[2])),new Subject(arr[0],arr[1]));
        }
    }
    static class DefinePartitonReducer extends Reducer<DescIntWritable,Subject,Subject,DescIntWritable> {
        @Override
        protected void reduce(DescIntWritable key, Iterable<Subject> values, Context context) throws IOException, InterruptedException {
            for (Subject subject : values) {
                context.write(subject, key);
            }
        }
    }}

MyPartition

java 复制代码
package demo7;

import demo5.DescIntWritable;
import org.apache.hadoop.mapreduce.Partitioner;

public class MyPartition extends Partitioner<DescIntWritable,Subject> {
    @Override
    public int getPartition(DescIntWritable key, Subject value, int numPartitions) {
        if ("语文".equals(value.getKemu())){
            return 0;
        }else if ("数学".equals(value.getKemu())) {
            return 1;
        }else if ("英语".equals(value.getKemu())) {
            return 2;
        }
            return 3;


        }
}

Subject

java 复制代码
package demo7;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class Subject implements Writable{
    private String name;
    private String kemu;

    public Subject() {
    }

    public Subject(String name, String kemu) {
        this.name = name;
        this.kemu = kemu;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getKemu() {
        return kemu;
    }

    public void setKemu(String kemu) {
        this.kemu = kemu;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(name);
        out.writeUTF(kemu);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.name = in.readUTF();
        this.kemu = in.readUTF();

    }

    @Override
    public String toString() {
        return name + " " +kemu;
    }
}

4.在hdfs查看结果


不要去争辩,多提升自己~

相关推荐
番茄老夫子2 小时前
宠物智能可穿戴产品调研报告
大数据·人工智能·宠物
狂团商城小师妹7 小时前
智慧废品回收小程序php+uniapp
大数据·微信·微信小程序·小程序·uni-app·微信公众平台
豪越大豪7 小时前
豪越消防一体化安全管控平台新亮点: AI功能、智能运维以及消防处置知识库
大数据·人工智能·运维开发
码界筑梦坊8 小时前
基于Flask的短视频流量数据可视化系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
weixin_307779139 小时前
PySpark实现GROUP BY WITH CUBE和WITH ROLLUP的分类汇总功能
大数据·开发语言·python·spark
平凡君10 小时前
ElasticSearch查询指南:从青铜到王者的骚操作
大数据·elasticsearch·搜索引擎
chimchim6611 小时前
hive开窗函数边界值ROWS BETWEEN 和 RANGE BETWEEN区别
数据仓库·hive·hadoop
千叶真尹12 小时前
通过Hive小文件合并(CombineHiveInputFormat)减少80%的Map任务数
数据仓库·hive·hadoop
Dolphin_Home12 小时前
搭建 Hadoop 3.3.6 伪分布式
大数据·hadoop·分布式
Yvonne97812 小时前
Hadoop HDFS基准测试
大数据·hadoop·hdfs