MVSnet 代码详解(pytorch)

大致过一下MVSnet 论文中核心的点对应代码应该怎么写。

forward 函数需要 照片,映射矩阵,以及深度值。 照片的shape是 (1,5,3,1184,1600)代表着1个batch,5张图片,然后一次是每张图片的channel和大小。projection_matrix是 (1,5,4,4)代表着5个(4*4)的举证。深度shape是(192,1) (这个还不知道为什么是这个shape)。

首先这输入进入self.feature里面去提取特征,self.feature 是一个feature net。他包括了6层 con2d +batchnorm2d

得到特征之后,就需要构建cost volume。

homo_warping是一个比较重要的函数,他的主要功能就是去实现differentiable homography。

这个函数需要src_fearture,src projection metrics, reference projection matrix,以及相对应的depth value。我的理解是,这里给到的 src_projection matrix是指,从src的相机坐标系投射到世界坐标系的投影矩阵。同理reference projection matrix 也是从reference image 的相机坐标系投影到世界坐标系。我们想要的是,将src的特征投影到ref的feature plane 上面。通过,src_projection左乘ref_projection的逆得到先将src投射到世界坐标系,然后再讲它们从世界坐标系中投射到ref plane上。

首先使用torch.meshfgrid这个函数来初始化点云。这个点之后xy两个方向,我们之后继续将生成的点的Z轴的值初始化成1。 然后初始化,depth volume. 创建一个深度网格。

其实上面三个图片的代码是在实现一下这个公式:

然后使用src_feature 在这个网格中进行采样。

采样得到的特征的shape是(1,32,192,296,400),大小和特征图大小一致,只是多了一个用来表示深度范围的维度。因为mvs 它不是要计算精确的depth,而是一个depth probability。这个应该对应的是原图中画圈的地方。

然后对得到的feature volume 之后, 把 feature volume 合成一个 大的volume

下一步需要计算cost regularization,它使用的是一个类似于U-net的网络啊

将得到的cost_volume 做一个 softmax得到 probability volume ,然后用回归深度。

最后的refinement 网络 就是一个很简单的小网络。

相关推荐
Mintopia几秒前
🌟 Gemini 3.0 Pro:Google 的「多模态巨灵」新篇章
人工智能·gemini·trae
Mintopia4 分钟前
🌐 跨平台 WebAIGC 适配:当 AI 遇上屏幕尺寸差异的爱恨情仇
人工智能·aigc·trae
天地之于壹炁兮27 分钟前
用VSCode打造高效AI开发环境:从配置到实战
ide·人工智能·vscode
孤狼warrior31 分钟前
我想拥有作家的思想 循环神经网络及变型
人工智能·rnn·深度学习·神经网络·lstm
极客BIM工作室1 小时前
BERT模型中词汇表向量与网络权重:从属关系与不可替代的功能分工
人工智能·自然语言处理·bert
八年。。1 小时前
Ai笔记(二)-PyTorch 中各类数据类型(numpy array、list、FloatTensor、LongTensor、Tensor)的区别
人工智能·pytorch·笔记
百***68821 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
许泽宇的技术分享1 小时前
从零到一,开源大模型的“民主化“之路:一份让AI触手可及的实战宝典
人工智能·开源·大模型
文慧的科技江湖1 小时前
开源 | 企业级开源人工智能训练推理平台 - GPU池化平台 - GPU算力平台 - GPU调度平台 - AI人工智能操作系统
人工智能·开源·gpu池化·推理平台·训练平台·gpu管理平台·ai人工智能操作系统
东皇太星1 小时前
VGGNet (2014)(卷积神经网络)
人工智能·神经网络·cnn·卷积神经网络