MVSnet 代码详解(pytorch)

大致过一下MVSnet 论文中核心的点对应代码应该怎么写。

forward 函数需要 照片,映射矩阵,以及深度值。 照片的shape是 (1,5,3,1184,1600)代表着1个batch,5张图片,然后一次是每张图片的channel和大小。projection_matrix是 (1,5,4,4)代表着5个(4*4)的举证。深度shape是(192,1) (这个还不知道为什么是这个shape)。

首先这输入进入self.feature里面去提取特征,self.feature 是一个feature net。他包括了6层 con2d +batchnorm2d

得到特征之后,就需要构建cost volume。

homo_warping是一个比较重要的函数,他的主要功能就是去实现differentiable homography。

这个函数需要src_fearture,src projection metrics, reference projection matrix,以及相对应的depth value。我的理解是,这里给到的 src_projection matrix是指,从src的相机坐标系投射到世界坐标系的投影矩阵。同理reference projection matrix 也是从reference image 的相机坐标系投影到世界坐标系。我们想要的是,将src的特征投影到ref的feature plane 上面。通过,src_projection左乘ref_projection的逆得到先将src投射到世界坐标系,然后再讲它们从世界坐标系中投射到ref plane上。

首先使用torch.meshfgrid这个函数来初始化点云。这个点之后xy两个方向,我们之后继续将生成的点的Z轴的值初始化成1。 然后初始化,depth volume. 创建一个深度网格。

其实上面三个图片的代码是在实现一下这个公式:

然后使用src_feature 在这个网格中进行采样。

采样得到的特征的shape是(1,32,192,296,400),大小和特征图大小一致,只是多了一个用来表示深度范围的维度。因为mvs 它不是要计算精确的depth,而是一个depth probability。这个应该对应的是原图中画圈的地方。

然后对得到的feature volume 之后, 把 feature volume 合成一个 大的volume

下一步需要计算cost regularization,它使用的是一个类似于U-net的网络啊

将得到的cost_volume 做一个 softmax得到 probability volume ,然后用回归深度。

最后的refinement 网络 就是一个很简单的小网络。

相关推荐
aigcapi4 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪5 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭5 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力5 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
做cv的小昊5 小时前
计算机图形学:【Games101】学习笔记05——着色(插值、高级纹理映射)与几何(基本表示方法)
笔记·opencv·学习·计算机视觉·图形渲染·几何学
Blossom.1186 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_6 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋6 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_6 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp6 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉