MVSnet 代码详解(pytorch)

大致过一下MVSnet 论文中核心的点对应代码应该怎么写。

forward 函数需要 照片,映射矩阵,以及深度值。 照片的shape是 (1,5,3,1184,1600)代表着1个batch,5张图片,然后一次是每张图片的channel和大小。projection_matrix是 (1,5,4,4)代表着5个(4*4)的举证。深度shape是(192,1) (这个还不知道为什么是这个shape)。

首先这输入进入self.feature里面去提取特征,self.feature 是一个feature net。他包括了6层 con2d +batchnorm2d

得到特征之后,就需要构建cost volume。

homo_warping是一个比较重要的函数,他的主要功能就是去实现differentiable homography。

这个函数需要src_fearture,src projection metrics, reference projection matrix,以及相对应的depth value。我的理解是,这里给到的 src_projection matrix是指,从src的相机坐标系投射到世界坐标系的投影矩阵。同理reference projection matrix 也是从reference image 的相机坐标系投影到世界坐标系。我们想要的是,将src的特征投影到ref的feature plane 上面。通过,src_projection左乘ref_projection的逆得到先将src投射到世界坐标系,然后再讲它们从世界坐标系中投射到ref plane上。

首先使用torch.meshfgrid这个函数来初始化点云。这个点之后xy两个方向,我们之后继续将生成的点的Z轴的值初始化成1。 然后初始化,depth volume. 创建一个深度网格。

其实上面三个图片的代码是在实现一下这个公式:

然后使用src_feature 在这个网格中进行采样。

采样得到的特征的shape是(1,32,192,296,400),大小和特征图大小一致,只是多了一个用来表示深度范围的维度。因为mvs 它不是要计算精确的depth,而是一个depth probability。这个应该对应的是原图中画圈的地方。

然后对得到的feature volume 之后, 把 feature volume 合成一个 大的volume

下一步需要计算cost regularization,它使用的是一个类似于U-net的网络啊

将得到的cost_volume 做一个 softmax得到 probability volume ,然后用回归深度。

最后的refinement 网络 就是一个很简单的小网络。

相关推荐
维维180-3121-14557 分钟前
AI大模型+Meta分析:助力发表高水平SCI论文
人工智能·meta分析·医学·地学
程序员陆通10 分钟前
CloudBase AI ToolKit + VSCode Copilot:打造高效智能云端开发新体验
人工智能·vscode·copilot
程高兴13 分钟前
遗传算法求解冷链路径优化问题matlab代码
开发语言·人工智能·matlab
拾零吖17 分钟前
吴恩达 Machine Learning(Class 1)
人工智能·机器学习
数据皮皮侠42 分钟前
最新上市公司业绩说明会文本数据(2017.02-2025.08)
大数据·数据库·人工智能·笔记·物联网·小程序·区块链
智算菩萨1 小时前
【计算机视觉与深度学习实战】05计算机视觉与深度学习在蚊子检测中的应用综述与假设
人工智能·深度学习·计算机视觉
hllqkbb1 小时前
人体姿态估计-动手学计算机视觉14
人工智能·opencv·计算机视觉·分类
XiongLiding1 小时前
我的第一个MCP,以及开发过程中的经验感悟
人工智能
三花AI1 小时前
阿里 20B 参数 Qwen-Image-Edit 全能图像编辑模型
人工智能
EthanLifeGreat1 小时前
ParallelWaveGAN-KaldiFree:纯Pytorch的PWG
人工智能·pytorch·深度学习·音频·语音识别