MVSnet 代码详解(pytorch)

大致过一下MVSnet 论文中核心的点对应代码应该怎么写。

forward 函数需要 照片,映射矩阵,以及深度值。 照片的shape是 (1,5,3,1184,1600)代表着1个batch,5张图片,然后一次是每张图片的channel和大小。projection_matrix是 (1,5,4,4)代表着5个(4*4)的举证。深度shape是(192,1) (这个还不知道为什么是这个shape)。

首先这输入进入self.feature里面去提取特征,self.feature 是一个feature net。他包括了6层 con2d +batchnorm2d

得到特征之后,就需要构建cost volume。

homo_warping是一个比较重要的函数,他的主要功能就是去实现differentiable homography。

这个函数需要src_fearture,src projection metrics, reference projection matrix,以及相对应的depth value。我的理解是,这里给到的 src_projection matrix是指,从src的相机坐标系投射到世界坐标系的投影矩阵。同理reference projection matrix 也是从reference image 的相机坐标系投影到世界坐标系。我们想要的是,将src的特征投影到ref的feature plane 上面。通过,src_projection左乘ref_projection的逆得到先将src投射到世界坐标系,然后再讲它们从世界坐标系中投射到ref plane上。

首先使用torch.meshfgrid这个函数来初始化点云。这个点之后xy两个方向,我们之后继续将生成的点的Z轴的值初始化成1。 然后初始化,depth volume. 创建一个深度网格。

其实上面三个图片的代码是在实现一下这个公式:

然后使用src_feature 在这个网格中进行采样。

采样得到的特征的shape是(1,32,192,296,400),大小和特征图大小一致,只是多了一个用来表示深度范围的维度。因为mvs 它不是要计算精确的depth,而是一个depth probability。这个应该对应的是原图中画圈的地方。

然后对得到的feature volume 之后, 把 feature volume 合成一个 大的volume

下一步需要计算cost regularization,它使用的是一个类似于U-net的网络啊

将得到的cost_volume 做一个 softmax得到 probability volume ,然后用回归深度。

最后的refinement 网络 就是一个很简单的小网络。

相关推荐
数科云2 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区2 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南2 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu2 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现2 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_3 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z3 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派3 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor4 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
哥布林学者4 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(一)词汇表征和类比推理
深度学习·ai