hdfs中MapReduce中的shuffle,combine和partitioner(hadoop,Hdfs)

1- MapReduce中shuffle阶段的工作流程以及何如优化该阶段?

分区 ,排序 ,溢写 ,拷贝到对应reduce机器上 ,增加combiner ,压缩溢写的文件

2-MapReduce中combine的作用,一般使用情景,那些情况不需要以及和reduce的区别?

1)Combiner的意义就是对每一个maptask的输出进行局部汇总 ,以减小网络传输量。

2)Combiner能够应用的前提是不能影响最终的业务逻辑 ,而且 ,Combiner的输出kv应该跟reducer的输入kv类型 要对应起来。

3)Combiner和reducer的区别在于运行的位置。

  • Combiner是在每一个maptask所在的节点运行;

  • Reducer是接收全局所有Mapper的输出结果

3- 如果没有定义partitioner,那数据在被送达reduce前是如何被区分的?

如果没有自定义的 partitioning,则默认的 partition 算法,即根据每一条数据的 key的 hashcode 值摸运算(%) reduce 的数量 ,得到的数字就是"分区号"。

相关推荐
华略创新3 小时前
引入外部咨询顾问,提供专业指导——制造企业大型系统项目的明智之选
大数据·制造·crm·erp系统·企业管理软件
时序数据说4 小时前
物联网时序数据管理的利器:为何IoTDB备受青睐?
大数据·数据库·物联网·时序数据库·iotdb
Justin_194 小时前
Linux防火墙firewalld
大数据·linux·运维
Lx3525 小时前
Hadoop数据处理模式:批处理与流处理结合技巧
大数据·hadoop
城管不管5 小时前
搭建分片集群
大数据·数据库
刘一说5 小时前
Elasticsearch启动失败?5步修复权限问题
大数据·elasticsearch·jenkins
刘一说5 小时前
Elasticsearch安装启动常见问题全解析
大数据·elasticsearch·jenkins
一水鉴天6 小时前
整体设计 之 绪 思维导图引擎 之 引 认知系统 之8 之 序 认知元架构 之4 统筹:范畴/分类/目录/条目 之2 (豆包助手 之6)
大数据·架构·认知科学
计算机编程-吉哥8 小时前
大数据毕业设计-基于大数据的健康饮食推荐数据分析与可视化系统(高分计算机毕业设计选题·定制开发·真正大数据)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
用户7415517014778 小时前
基础语法和数据类型
大数据