hdfs中MapReduce中的shuffle,combine和partitioner(hadoop,Hdfs)

1- MapReduce中shuffle阶段的工作流程以及何如优化该阶段?

分区 ,排序 ,溢写 ,拷贝到对应reduce机器上 ,增加combiner ,压缩溢写的文件

2-MapReduce中combine的作用,一般使用情景,那些情况不需要以及和reduce的区别?

1)Combiner的意义就是对每一个maptask的输出进行局部汇总 ,以减小网络传输量。

2)Combiner能够应用的前提是不能影响最终的业务逻辑 ,而且 ,Combiner的输出kv应该跟reducer的输入kv类型 要对应起来。

3)Combiner和reducer的区别在于运行的位置。

  • Combiner是在每一个maptask所在的节点运行;

  • Reducer是接收全局所有Mapper的输出结果

3- 如果没有定义partitioner,那数据在被送达reduce前是如何被区分的?

如果没有自定义的 partitioning,则默认的 partition 算法,即根据每一条数据的 key的 hashcode 值摸运算(%) reduce 的数量 ,得到的数字就是"分区号"。

相关推荐
一只会写代码的猫4 小时前
可持续发展中的绿色科技:推动未来的环保创新
大数据·人工智能
沧海寄馀生4 小时前
Apache Hadoop生态组件部署分享-Hadoop
大数据·hadoop·分布式·apache
毕设源码-朱学姐4 小时前
【开题答辩全过程】以 基于Hadoop的豆瓣电影数据分析系统设计与实现为例,包含答辩的问题和答案
大数据·hadoop·分布式
原神启动15 小时前
云计算大数据——Nginx入门篇( Web 核心概念、HTTP/HTTPS协议 与 Nginx 安装)
大数据·http·云计算
喝养乐多长不高5 小时前
JAVA微服务脚手架项目详解(三)
java·大数据·微服务·文件·地图·oss
north_eagle6 小时前
MySQL 业务数据,报表方案
大数据·数据库
数据库学啊6 小时前
大数据场景下时序数据库选型指南:TDengine为什么凭借领先的技术和实践脱颖而出?
大数据·数据库·时序数据库·tdengine
Mr_sun.7 小时前
Day08——ElasticSearch-基础
大数据·elasticsearch·jenkins
Elastic 中国社区官方博客8 小时前
在 Elasticsearch 中实现带可观测性的 agentic 搜索以自动调优相关性
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
Blossom.1188 小时前
RLHF的“炼狱“突围:从PPO到DPO的工业级对齐实战
大数据·人工智能·分布式·python·算法·机器学习·边缘计算