一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列nums,总共有n个预约,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
我们用动态规划的思想解决这个问题。首先创建dp表,确定状态表示,很自然地想到,可以用dp[i]表示一直收到下标为i的请求后,接受的预约的最长总时长。然而,这么想是不够的,因为对于每个预约,都有可能接受或者不接受。所以要分类讨论:用f[i]表示接受下标为i的请求后,接受的预约的最长总时长;用g[i]表示不接受下标为i的请求后,接受的预约的最长总时长。
接着推导状态转移方程。对于f[i],接受了下标为i的预约,说明没有接受下标为i-1的预约,此时接受的预约的最长总时长应为g[i-1]+nums[i]。对于g[i],不接受下标为i的预约,有可能接受了下标为i-1的预约,也有可能不接受下标为i-1的预约,由于要求最长总时长,所以g[i]=max(f[i-1],g[i-1])。
初始化时,只需把f[0]初始化成nums[0],g[0]初始化成0,再从左往右同时填f表和g表。最后,返回max(f[n-1],g[n-1])。
cpp
class Solution
{
public:
int massage(vector<int>& nums)
{
int n = nums.size();
// 处理边界情况
if (n == 0)
return 0;
// 创建dp表
vector<int> f(n);
auto g = f;
// 初始化
f[0] = nums[0];
// 填表
for (int i = 1; i < n; i++)
{
f[i] = g[i - 1] + nums[i];
g[i] = max(f[i - 1], g[i - 1]);
}
return max(f[n - 1], g[n - 1]);
}
};