「动态规划」按摩师

力扣原题链接,点击跳转

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列nums,总共有n个预约,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

我们用动态规划的思想解决这个问题。首先创建dp表,确定状态表示,很自然地想到,可以用dp[i]表示一直收到下标为i的请求后,接受的预约的最长总时长。然而,这么想是不够的,因为对于每个预约,都有可能接受或者不接受。所以要分类讨论:用f[i]表示接受下标为i的请求后,接受的预约的最长总时长;用g[i]表示不接受下标为i的请求后,接受的预约的最长总时长。

接着推导状态转移方程。对于f[i],接受了下标为i的预约,说明没有接受下标为i-1的预约,此时接受的预约的最长总时长应为g[i-1]+nums[i]。对于g[i],不接受下标为i的预约,有可能接受了下标为i-1的预约,也有可能不接受下标为i-1的预约,由于要求最长总时长,所以g[i]=max(f[i-1],g[i-1])。

初始化时,只需把f[0]初始化成nums[0],g[0]初始化成0,再从左往右同时填f表和g表。最后,返回max(f[n-1],g[n-1])。

cpp 复制代码
class Solution
{
public:
    int massage(vector<int>& nums)
    {
        int n = nums.size();
        // 处理边界情况
        if (n == 0)
            return 0;
        // 创建dp表
        vector<int> f(n);
        auto g = f;
        // 初始化
        f[0] = nums[0];
        // 填表
        for (int i = 1; i < n; i++)
        {
            f[i] = g[i - 1] + nums[i];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[n - 1], g[n - 1]);
    }
};
相关推荐
daxi15011 分钟前
C语言从入门到进阶——第9讲:函数递归
c语言·开发语言·c++·算法·蓝桥杯
持续学习的程序员+11 小时前
强化学习Q-chunking算法
算法
Polaris北2 小时前
第二十七天打卡
开发语言·c++·算法
风吹乱了我的头发~2 小时前
Day30:2026年2月20日打卡
算法
blackicexs2 小时前
第五周第五天
算法
不吃橘子的橘猫3 小时前
《集成电路设计》复习资料2(设计基础与方法)
学习·算法·fpga开发·集成电路·仿真·半导体
halen3333 小时前
How Masters Tool Fixed My Digital Disaster
算法·均值算法·推荐算法
重生之后端学习3 小时前
78. 子集
java·数据结构·算法·职场和发展·深度优先
摸鱼仙人~3 小时前
0-1背包与完全背包:遍历顺序背后的秘密
人工智能·算法
juleskk3 小时前
2.15 复试训练
开发语言·c++·算法