R语言:单细胞:挑选PC分群聚类

复制代码
> library(dplyr)
> library(patchwork)
> library(ggplot2)
> library(SingleR)
> library(randomcoloR)
> library(clustree)

#生成随机颜色

> randomColor <- function() {

paste0("#",paste0(sample(c(0:9, letters[1:6]), 6, replace = TRUE),collapse = ""))

}

生成100个随机颜色

> randomColors <- replicate(100,randomColor())

> seurat=readRDS("去批次后seurat.rds")#读取数据

> collist=c(ggsci::pal_nejm()(8))

> names(collist)=names(table(seurat$Type))

#热图可视化前20个PC

> pdf(file = "前20个PC热图.pdf",width =7.5,height = 9)

> DimHeatmap(seurat, dims = 1:20, cells = 1000, balanced = TRUE)

> dev.off()

##确定使用PC个数

> seurat <- JackStraw(seurat, num.replicate = 100)

> seurat <- ScoreJackStraw(seurat, dims = 1:20)

> pdf(file = "jackstrawplot.pdf",width =7.5,height = 5.5)

> JackStrawPlot(seurat, dims = 1:20)

> dev.off()

> pdf(file = "ElbowPlot.pdf",width =5,height = 4)

> ElbowPlot(seurat,ndims = 30)

> dev.off()

#选择PC数

> seuratPC=9

##对细胞聚类

> seurat=FindNeighbors(seurat, dims = 1:seuratPC, reduction = "harmony")

#挑选分辨率

> for (res in c(0.01,0.05,0.1,1,1.5,2,2.5,3,3.5,4)) {

seurat=FindClusters(seurat, graph.name = "RNA_snn", resolution = res, algorithm = 1)}

apply([email protected][,grep("RNA_snn_res",colnames([email protected]))],2,table)

> p2_tree=clustree([email protected], prefix = "RNA_snn_res.")

> pdf(file = "挑选分辨率.pdf",width =12,height =10)

> p2_tree

> dev.off()

> seurat=FindNeighbors(seurat, dims = 1:seuratPC, reduction = "harmony")

#选择分辨率进行降维

> px=1

> seurat <- FindClusters(seurat, resolution = px)

only.pos:只保留上调差异表达的基因

> seurat.markers <- FindAllMarkers(seurat, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

> write.csv(seurat.markers,file = "每个聚类的marker基因.csv")

> head(seurat.markers)

#选择每个聚类前5各基因绘制热图

> top5seurat.markers <- seurat.markers %>%

group_by(cluster) %>%

top_n(n = 5, wt = avg_log2FC)

> col <- c(ggsci::pal_npg()(9),ggsci::pal_jco()(9),ggsci::pal_jama()(7),ggsci::pal_nejm()(8))

> pdf(file = "聚类热图.pdf",width =22,height = 16)

> DoHeatmap(seurat,features = top5seurat.markers$gene,

group.colors = col) +

ggsci::scale_colour_npg() +

scale_fill_gradient2(low = '#0099CC',mid = 'white',high = '#CC0033',

name = 'Z-score')

> dev.off()

将细胞在低维空间可视化UMAP/tSNE

> seurat <- RunUMAP(seurat, dims = 1:seuratPC, reduction = "harmony")

> seurat <- RunTSNE(seurat, dims = 1:seuratPC, reduction = "harmony")

可视化UMAP/tSNE3

> pdf(file = "聚类后UMAP.pdf",width =6.5,height = 5.5)

> DimPlot(seurat, reduction = "umap", label = T, label.size = 3.5,pt.size = 2)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> pdf(file = "聚类后TSEN.pdf",width =6.5,height = 5.5)

> DimPlot(seurat, reduction = "tsne", label = T, label.size = 3.5,pt.size = 2)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

学习交流

相关推荐
A林玖1 天前
【计算机相关学习】R语言
开发语言·学习·r语言
Yolo566Q1 天前
R语言、BIOMOD2丨物种分布模型研究进展与挑战
r语言
岁月如歌,青春不败1 天前
MaxEnt模型全解析:从原理到 R 语言实战,开启生态环境研究新视野
arcgis·r语言·生态学·论文写作·生态系统服务·物种分布·maxent模型
invincible_Tang2 天前
R格式 (15届B) 高精度
开发语言·算法·r语言
KY_chenzhao2 天前
基于R语言与MaxEnt的物种分布建模全流程解析:从算法优化到科研制图实战
r语言·maxent·气候变化·物种分布
tRNA做科研2 天前
通过Bioconductor/BiocManager安装生物r包详解(问题汇总)
开发语言·r语言·生物信息学·bioconductor·biocmanager
Tiger Z2 天前
R 语言科研绘图 --- 韦恩图-汇总
开发语言·程序人生·r语言·贴图
Biomamba生信基地3 天前
R语言入门课| 04 R语言基本函数
开发语言·r语言·生信
十三画者4 天前
【工具】BioPred一个用于精准医疗中生物标志物分析的 R 软件包
数据挖掘·数据分析·r语言·数据可视化
小艳加油4 天前
MaxEnt物种分布建模全流程;R+ArcGIS+MaxEnt模型物种分布模拟、参数优化方法、结果分析制图与论文写作
arcgis·r语言·物种分布模拟·maxent模型