C# Sdcb.PaddleInference 中文分词、词性标注

C# Sdcb.PaddleInference 中文分词、词性标注

目录

效果

项目

代码

下载

参考


效果

项目

代码

using Sdcb.PaddleNLP.Lac;

using System;

using System.Collections.Generic;

using System.Data;

using System.Linq;

using System.Windows.Forms;

namespace C__Sdcb.PaddleInference_中文分词_词性标注

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

ChineseSegmenter segmenter;

private void button1_Click(object sender, EventArgs e)

{

string input = "我是中国人,我爱我的祖国。";

textBox1.Text = input;

string[] result = segmenter.Segment(input);

textBox2.Text = string.Join(",", result);

}

private void Form1_Load(object sender, EventArgs e)

{

segmenter = new ChineseSegmenter();

}

private void button2_Click(object sender, EventArgs e)

{

string input = "我爱北京天安门";

textBox1.Text = input;

textBox2.Text = "";

WordAndTag[] result = segmenter.Tagging(input);

string labels = string.Join(",", result.Select(x => x.Label));

string words = string.Join(",", result.Select(x => x.Word));

string tags = string.Join(",", result.Select(x => x.Tag));

textBox2.Text += "words:" + words + "\r\n";

textBox2.Text += "labels:" + labels + "\r\n";

textBox2.Text += "tags" + tags + "\r\n";

}

private void button3_Click(object sender, EventArgs e)

{

string input = "我爱北京天安门";

textBox1.Text = input;

textBox2.Text = "";

Dictionary<string, WordTag?> customizedWords = new Dictionary<string, WordTag?>();

customizedWords.Add("北京天安门", WordTag.LocationName);

LacOptions lacOptions = new LacOptions(customizedWords);

ChineseSegmenter segmenter_custom = new ChineseSegmenter(lacOptions);

WordAndTag[] result = segmenter_custom.Tagging(input);

string labels = string.Join(",", result.Select(x => x.Label));

string words = string.Join(",", result.Select(x => x.Word));

string tags = string.Join(",", result.Select(x => x.Tag));

textBox2.Text += "words:" + words + "\r\n";

textBox2.Text += "labels:" + labels + "\r\n";

textBox2.Text += "tags" + tags + "\r\n";

}

}

}

复制代码
using Sdcb.PaddleNLP.Lac;
using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;
using System.Windows.Forms;

namespace C__Sdcb.PaddleInference_中文分词_词性标注
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        ChineseSegmenter segmenter;

        private void button1_Click(object sender, EventArgs e)
        {
            string input = "我是中国人,我爱我的祖国。";
            textBox1.Text = input;
            string[] result = segmenter.Segment(input);
            textBox2.Text = string.Join(",", result);

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            segmenter = new ChineseSegmenter();
        }

        private void button2_Click(object sender, EventArgs e)
        {
            string input = "我爱北京天安门";
            textBox1.Text = input;
            textBox2.Text = "";
            WordAndTag[] result = segmenter.Tagging(input);
            string labels = string.Join(",", result.Select(x => x.Label));
            string words = string.Join(",", result.Select(x => x.Word));
            string tags = string.Join(",", result.Select(x => x.Tag));

            textBox2.Text += "words:" + words + "\r\n";
            textBox2.Text += "labels:" + labels + "\r\n";
            textBox2.Text += "tags" + tags + "\r\n";
        }

        private void button3_Click(object sender, EventArgs e)
        {
            string input = "我爱北京天安门";
            textBox1.Text = input;
            textBox2.Text = "";

            Dictionary<string, WordTag?> customizedWords = new Dictionary<string, WordTag?>();
            customizedWords.Add("北京天安门", WordTag.LocationName);

            LacOptions lacOptions = new LacOptions(customizedWords);

            ChineseSegmenter segmenter_custom = new ChineseSegmenter(lacOptions);

            WordAndTag[] result = segmenter_custom.Tagging(input);
            string labels = string.Join(",", result.Select(x => x.Label));
            string words = string.Join(",", result.Select(x => x.Word));
            string tags = string.Join(",", result.Select(x => x.Tag));

            textBox2.Text += "words:" + words + "\r\n";
            textBox2.Text += "labels:" + labels + "\r\n";
            textBox2.Text += "tags" + tags + "\r\n";
        }
    }
}

下载

源码下载

参考

https://github.com/sdcb/PaddleSharp/blob/master/docs/paddlenlp-lac.md

相关推荐
大模型任我行5 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
大模型任我行12 小时前
Meta:LLM无监督提升科研能力
人工智能·语言模型·自然语言处理·论文笔记
金井PRATHAMA14 小时前
格雷马斯语义方阵对人工智能自然语言处理深层语义分析的影响与启示研究
人工智能·自然语言处理
中國龍在廣州15 小时前
谈谈2025年人工智能现状及发展趋势分析
人工智能·深度学习·算法·自然语言处理·chatgpt·机器人·机器人学习
可触的未来,发芽的智生16 小时前
一万个为什么:频率和相位
javascript·人工智能·python·程序人生·自然语言处理
金井PRATHAMA17 小时前
格雷马斯语义方阵对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
natide1 天前
表示/嵌入差异-7-间隔/边际对齐(Alignment Margin)
人工智能·深度学习·算法·机器学习·自然语言处理·知识图谱
玄同7652 天前
Python 装饰器:LLM API 的安全与可观测性增强
开发语言·人工智能·python·安全·自然语言处理·numpy·装饰器
小陈phd2 天前
大语言模型实战(九)——从零到一:搭建基于 MCP 的 RAG 系统完整教程
人工智能·语言模型·自然语言处理
wa的一声哭了2 天前
矩阵分析 方阵幂级数与方阵函数
人工智能·python·线性代数·算法·自然语言处理·矩阵·django