超越传统:大型语言模型在文本分类中的突破与代价

论文地址: https://arxiv.org/pdf/2501.08457

论文题目:LARGE LANGUAGE MODELS FOR TEXT CLASSIFICATION: CASE STUDY AND COMPREHENSIVE REVIEW

哈喽,大家好,我是朗泽,最近在做大模型意图识别(可以)相关需求,今天分享一篇可以用于大模型技术综述的实证研究。这项研究在虚假新闻检测和员工位置分类两个典型场景中,对9款主流大模型与RoBERTa等传统方法展开了全面对比。结果发现:在复杂的多分类任务中,Llama3和GPT-4的表现甚至优于传统最优模型,但代价是更长的推理时间;而在简单二分类场景中,支持向量机等传统方法反而能以更少时间达成相当效果。研究还揭示了提示工程的显著影响------合适的提示策略可使模型性能提升超过10%,其中思维链与少样本提示的表现最为亮眼。

1. Abstract

释放大型语言模型在数据分类领域的潜力,代表了自然语言处理中一个充满前景的新前沿。本研究通过两种不同分类场景------其一是基于在线发布的职位评论对员工工作地点进行分类(多类别分类),其二是将新闻文章分类为虚假或非虚假(二分类)------系统评估了不同大型语言模型与前沿深度学习及机器学习模型的性能表现。本文的分析涵盖了在规模、量化和架构上各具特色的多样化语言模型,探索了不同提示技术的影响,并以加权F1分数作为核心评估指标。同时,通过衡量各模型在性能(F1分数)与时间(推理响应时间)之间的权衡关系,为每个模型的实际适用性提供了更精细的解读。研究发现,提示策略的差异会引发模型响应的显著变化。尽管需要付出更长的推理时间代价,但大型语言模型(特别是Llama3和GPT-4)在复杂分类任务(如多类别分类)中能够超越传统方法;而在较简单的二分类任务中,基础机器学习模型则展现出更优的效能时间比。

完整文章链接: https://mp.weixin.qq.com/s/FFqUGToVPFDFx0eL7rbEoQ

相关推荐
延凡科技3 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329723 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔4 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案5 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信5 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博6 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件7 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车7 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经7 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘8 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt