lightning的hook顺序

结果

setup: 训练循环开始前设置数据加载器和模型。

configure_optimizers: 设置优化器和学习率调度器。

on_fit_start: 训练过程开始。

on_train_start: 训练开始。

on_train_epoch_start: 每个训练周期开始。

on_train_batch_start: 每个训练批次开始。

on_before_backward: 反向传播之前。

on_after_backward: 反向传播之后。

on_before_zero_grad: 清空梯度之前。

on_after_zero_grad: 清空梯度之后。

on_before_optimizer_step: 优化器步骤之前。

on_train_batch_end: 每个训练批次结束。

on_train_epoch_end: 每个训练周期结束。

on_train_end: 训练结束。

on_fit_end: 训练过程结束。

测试代码

py 复制代码
import torch
from torch.utils.data import DataLoader, TensorDataset
from pytorch_lightning import LightningModule, Trainer, Callback
from pytorch_lightning.callbacks import Callback

# 定义一个简单的线性回归模型
class LinearRegression(LightningModule):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = torch.nn.functional.mse_loss(y_hat, y)
        return loss
    
    def on_after_backward(self, *args, **kwargs):
        print("After backward is called!", args, kwargs)
        return super().on_after_backward(*args, **kwargs)
    
    def on_before_zero_grad(self, *args, **kwargs):
        print("Before zero grad is called!", args, kwargs)
        return super().on_before_zero_grad(*args, **kwargs)
    
    def on_after_zero_grad(self, *args, **kwargs):
        print("After zero grad is called!", args, kwargs)
        return super().on_after_zero_grad(*args, **kwargs)
    
    def on_before_backward(self, *args, **kwargs):
        print("Before backward is called!", args, kwargs)
        return super().on_before_backward(*args, **kwargs)
    
    def on_before_optimizer_step(self, *args, **kwargs):
        print("Before optimizer step is called!", args, kwargs)
        return super().on_before_optimizer_step(*args, **kwargs)
    
    def on_after_optimizer_step(self, *args, **kwargs):
        print("After optimizer step is called!", args, kwargs)
        return super().on_after_optimizer_step(*args, **kwargs)
    
    def on_fit_start(self, *args, **kwargs):
        print("Fit is starting!", args, kwargs)
        return super().on_fit_start(*args, **kwargs)
    
    def on_fit_end(self, *args, **kwargs):
        print("Fit is ending!", args, kwargs)
        return super().on_fit_end(*args, **kwargs)
    
    def setup(self, *args, **kwargs):
        print("Setup is called!", args, kwargs)
        return super().setup(*args, **kwargs)
    
    def configure_optimizers(self, *args, **kwargs):
        print("Configure Optimizers is called!", args, kwargs)
        return super().configure_optimizers(*args, **kwargs)
    
    def on_train_start(self, *args, **kwargs):
        print("Training is starting!", args, kwargs)
        return super().on_train_start(*args, **kwargs)
    
    def on_train_end(self, *args, **kwargs):
        print("Training is ending!", args, kwargs)
        return super().on_train_end(*args, **kwargs)
    
    def on_train_batch_start(self, *args, **kwargs):
        print(f"Training batch is starting!", args, kwargs)
        return super().on_train_batch_start(*args, **kwargs)
    
    def on_train_batch_end(self, *args, **kwargs):
        print(f"Training batch is ending!", args, kwargs)
        return super().on_train_batch_end(*args, **kwargs)
    
    def on_train_epoch_start(self, *args, **kwargs):
        print(f"Training epoch is starting!", args, kwargs)
        return super().on_train_epoch_start(*args, **kwargs)
    
    def on_train_epoch_end(self, *args, **kwargs):
        print(f"Training epoch is ending!", args, kwargs)
        return super().on_train_epoch_end(*args, **kwargs)
    
    
# 创建数据集
x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]], dtype=torch.float)
y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0]], dtype=torch.float)
train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=2)

# 创建模型和训练器
model = LinearRegression()
trainer = Trainer(max_epochs=2)

# 开始训练
trainer.fit(model, train_loader)
相关推荐
小王子10242 分钟前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui6 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20251 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥1 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
Mason Lin1 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客2 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
云空2 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊83 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
RZer3 小时前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos