lightning的hook顺序

结果

setup: 训练循环开始前设置数据加载器和模型。

configure_optimizers: 设置优化器和学习率调度器。

on_fit_start: 训练过程开始。

on_train_start: 训练开始。

on_train_epoch_start: 每个训练周期开始。

on_train_batch_start: 每个训练批次开始。

on_before_backward: 反向传播之前。

on_after_backward: 反向传播之后。

on_before_zero_grad: 清空梯度之前。

on_after_zero_grad: 清空梯度之后。

on_before_optimizer_step: 优化器步骤之前。

on_train_batch_end: 每个训练批次结束。

on_train_epoch_end: 每个训练周期结束。

on_train_end: 训练结束。

on_fit_end: 训练过程结束。

测试代码

py 复制代码
import torch
from torch.utils.data import DataLoader, TensorDataset
from pytorch_lightning import LightningModule, Trainer, Callback
from pytorch_lightning.callbacks import Callback

# 定义一个简单的线性回归模型
class LinearRegression(LightningModule):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = torch.nn.functional.mse_loss(y_hat, y)
        return loss
    
    def on_after_backward(self, *args, **kwargs):
        print("After backward is called!", args, kwargs)
        return super().on_after_backward(*args, **kwargs)
    
    def on_before_zero_grad(self, *args, **kwargs):
        print("Before zero grad is called!", args, kwargs)
        return super().on_before_zero_grad(*args, **kwargs)
    
    def on_after_zero_grad(self, *args, **kwargs):
        print("After zero grad is called!", args, kwargs)
        return super().on_after_zero_grad(*args, **kwargs)
    
    def on_before_backward(self, *args, **kwargs):
        print("Before backward is called!", args, kwargs)
        return super().on_before_backward(*args, **kwargs)
    
    def on_before_optimizer_step(self, *args, **kwargs):
        print("Before optimizer step is called!", args, kwargs)
        return super().on_before_optimizer_step(*args, **kwargs)
    
    def on_after_optimizer_step(self, *args, **kwargs):
        print("After optimizer step is called!", args, kwargs)
        return super().on_after_optimizer_step(*args, **kwargs)
    
    def on_fit_start(self, *args, **kwargs):
        print("Fit is starting!", args, kwargs)
        return super().on_fit_start(*args, **kwargs)
    
    def on_fit_end(self, *args, **kwargs):
        print("Fit is ending!", args, kwargs)
        return super().on_fit_end(*args, **kwargs)
    
    def setup(self, *args, **kwargs):
        print("Setup is called!", args, kwargs)
        return super().setup(*args, **kwargs)
    
    def configure_optimizers(self, *args, **kwargs):
        print("Configure Optimizers is called!", args, kwargs)
        return super().configure_optimizers(*args, **kwargs)
    
    def on_train_start(self, *args, **kwargs):
        print("Training is starting!", args, kwargs)
        return super().on_train_start(*args, **kwargs)
    
    def on_train_end(self, *args, **kwargs):
        print("Training is ending!", args, kwargs)
        return super().on_train_end(*args, **kwargs)
    
    def on_train_batch_start(self, *args, **kwargs):
        print(f"Training batch is starting!", args, kwargs)
        return super().on_train_batch_start(*args, **kwargs)
    
    def on_train_batch_end(self, *args, **kwargs):
        print(f"Training batch is ending!", args, kwargs)
        return super().on_train_batch_end(*args, **kwargs)
    
    def on_train_epoch_start(self, *args, **kwargs):
        print(f"Training epoch is starting!", args, kwargs)
        return super().on_train_epoch_start(*args, **kwargs)
    
    def on_train_epoch_end(self, *args, **kwargs):
        print(f"Training epoch is ending!", args, kwargs)
        return super().on_train_epoch_end(*args, **kwargs)
    
    
# 创建数据集
x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]], dtype=torch.float)
y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0]], dtype=torch.float)
train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=2)

# 创建模型和训练器
model = LinearRegression()
trainer = Trainer(max_epochs=2)

# 开始训练
trainer.fit(model, train_loader)
相关推荐
腾讯云开发者1 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗1 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
喵手1 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
Coder_Boy_1 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2501_944934732 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
啊森要自信2 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
helloworldandy2 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
2401_836235862 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs2 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习