lightning的hook顺序

结果

setup: 训练循环开始前设置数据加载器和模型。

configure_optimizers: 设置优化器和学习率调度器。

on_fit_start: 训练过程开始。

on_train_start: 训练开始。

on_train_epoch_start: 每个训练周期开始。

on_train_batch_start: 每个训练批次开始。

on_before_backward: 反向传播之前。

on_after_backward: 反向传播之后。

on_before_zero_grad: 清空梯度之前。

on_after_zero_grad: 清空梯度之后。

on_before_optimizer_step: 优化器步骤之前。

on_train_batch_end: 每个训练批次结束。

on_train_epoch_end: 每个训练周期结束。

on_train_end: 训练结束。

on_fit_end: 训练过程结束。

测试代码

py 复制代码
import torch
from torch.utils.data import DataLoader, TensorDataset
from pytorch_lightning import LightningModule, Trainer, Callback
from pytorch_lightning.callbacks import Callback

# 定义一个简单的线性回归模型
class LinearRegression(LightningModule):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = torch.nn.functional.mse_loss(y_hat, y)
        return loss
    
    def on_after_backward(self, *args, **kwargs):
        print("After backward is called!", args, kwargs)
        return super().on_after_backward(*args, **kwargs)
    
    def on_before_zero_grad(self, *args, **kwargs):
        print("Before zero grad is called!", args, kwargs)
        return super().on_before_zero_grad(*args, **kwargs)
    
    def on_after_zero_grad(self, *args, **kwargs):
        print("After zero grad is called!", args, kwargs)
        return super().on_after_zero_grad(*args, **kwargs)
    
    def on_before_backward(self, *args, **kwargs):
        print("Before backward is called!", args, kwargs)
        return super().on_before_backward(*args, **kwargs)
    
    def on_before_optimizer_step(self, *args, **kwargs):
        print("Before optimizer step is called!", args, kwargs)
        return super().on_before_optimizer_step(*args, **kwargs)
    
    def on_after_optimizer_step(self, *args, **kwargs):
        print("After optimizer step is called!", args, kwargs)
        return super().on_after_optimizer_step(*args, **kwargs)
    
    def on_fit_start(self, *args, **kwargs):
        print("Fit is starting!", args, kwargs)
        return super().on_fit_start(*args, **kwargs)
    
    def on_fit_end(self, *args, **kwargs):
        print("Fit is ending!", args, kwargs)
        return super().on_fit_end(*args, **kwargs)
    
    def setup(self, *args, **kwargs):
        print("Setup is called!", args, kwargs)
        return super().setup(*args, **kwargs)
    
    def configure_optimizers(self, *args, **kwargs):
        print("Configure Optimizers is called!", args, kwargs)
        return super().configure_optimizers(*args, **kwargs)
    
    def on_train_start(self, *args, **kwargs):
        print("Training is starting!", args, kwargs)
        return super().on_train_start(*args, **kwargs)
    
    def on_train_end(self, *args, **kwargs):
        print("Training is ending!", args, kwargs)
        return super().on_train_end(*args, **kwargs)
    
    def on_train_batch_start(self, *args, **kwargs):
        print(f"Training batch is starting!", args, kwargs)
        return super().on_train_batch_start(*args, **kwargs)
    
    def on_train_batch_end(self, *args, **kwargs):
        print(f"Training batch is ending!", args, kwargs)
        return super().on_train_batch_end(*args, **kwargs)
    
    def on_train_epoch_start(self, *args, **kwargs):
        print(f"Training epoch is starting!", args, kwargs)
        return super().on_train_epoch_start(*args, **kwargs)
    
    def on_train_epoch_end(self, *args, **kwargs):
        print(f"Training epoch is ending!", args, kwargs)
        return super().on_train_epoch_end(*args, **kwargs)
    
    
# 创建数据集
x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]], dtype=torch.float)
y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0]], dtype=torch.float)
train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=2)

# 创建模型和训练器
model = LinearRegression()
trainer = Trainer(max_epochs=2)

# 开始训练
trainer.fit(model, train_loader)
相关推荐
小阿鑫9 分钟前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域44 分钟前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
HAPPY酷1 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
Tiger Z1 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
传奇开心果编程2 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
别惹CC2 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
王者鳜錸3 小时前
PYTHON让繁琐的工作自动化-PYTHON基础
python·microsoft·自动化
key_Go3 小时前
7.Ansible自动化之-实施任务控制
python·ansible·numpy