数据集005:螺丝螺母目标检测数据集(含数据集下载链接)

数据集简介

背景干净的目标检测数据集。

里面仅仅包含螺丝和螺母两种类别的目标,背景为干净的培养皿。图片数量约420张,train.txt 文件描述每个图片中的目标,label_list 文件描述类别

另附一个验证集合,有10张图片,eval.txt 描述图片中目标,格式和 train.txt 相同

部分代码

python 复制代码
"""
训练常基于dark-net的YOLOv3网络,目标检测
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = '0.82'
import uuid
import numpy as np
import time
import six
import math
import random
import paddle
import paddle.fluid as fluid
import logging
import xml.etree.ElementTree
import codecs
import json

from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from PIL import Image, ImageEnhance, ImageDraw

logger = None
train_parameters = {
    "data_dir": "data/data6045",
    "train_list": "train.txt",
    "eval_list": "eval.txt",
    "class_dim": -1,
    "label_dict": {},
    "num_dict": {},
    "image_count": -1,
    "continue_train": True,     # 是否加载前一次的训练参数,接着训练
    "pretrained": False,
    "pretrained_model_dir": "./pretrained-model",
    "save_model_dir": "./yolo-model",
    "model_prefix": "yolo-v3",
    "freeze_dir": "freeze_model",
    "use_tiny": True,          # 是否使用 裁剪 tiny 模型
    "max_box_num": 20,          # 一幅图上最多有多少个目标
    "num_epochs": 1,
    "train_batch_size": 8,      # 对于完整 yolov3,每一批的训练样本不能太多,内存会炸掉;如果使用 tiny,可以适当大一些
    "use_gpu": True,
    "yolo_cfg": {
        "input_size": [3, 448, 448],    # 原版的边长大小为608,为了提高训练速度和预测速度,此处压缩为448
        "anchors": [7, 10, 12, 22, 24, 17, 22, 45, 46, 33, 43, 88, 85, 66, 115, 146, 275, 240],
        "anchor_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    },
    "yolo_tiny_cfg": {
        "input_size": [3, 256, 256],
        "anchors": [6, 8, 13, 15, 22, 34, 48, 50, 81, 100, 205, 191],
        "anchor_mask": [[3, 4, 5], [0, 1, 2]]
    },
    "ignore_thresh": 0.7,
    "mean_rgb": [127.5, 127.5, 127.5],
    "mode": "train",
    "multi_data_reader_count": 4,
    "apply_distort": True,
    "nms_top_k": 300,
    "nms_pos_k": 300,
    "valid_thresh": 0.01,
    "nms_thresh": 0.45,
    "image_distort_strategy": {
        "expand_prob": 0.5,
        "expand_max_ratio": 4,
        "hue_prob": 0.5,
        "hue_delta": 18,
        "contrast_prob": 0.5,
        "contrast_delta": 0.5,
        "saturation_prob": 0.5,
        "saturation_delta": 0.5,
        "brightness_prob": 0.5,
        "brightness_delta": 0.125
    },
    "sgd_strategy": {
        "learning_rate": 0.002,
        "lr_epochs": [30, 50, 65],
        "lr_decay": [1, 0.5, 0.25, 0.1]
    },
    "early_stop": {
        "sample_frequency": 50,
        "successive_limit": 3,
        "min_loss": 2.5,
        "min_curr_map": 0.84
    }
}


def init_train_parameters():
    """
    初始化训练参数,主要是初始化图片数量,类别数
    :return:
    """
    file_list = os.path.join(train_parameters['data_dir'], train_parameters['train_list'])
    label_list = os.path.join(train_parameters['data_dir'], "label_list")
    index = 0
    with codecs.open(label_list, encoding='utf-8') as flist:
        lines = [line.strip() for line in flist]
        for line in lines:
            train_parameters['num_dict'][index] = line.strip()
            train_parameters['label_dict'][line.strip()] = index
            index += 1
        train_parameters['class_dim'] = index
    with codecs.open(file_list, encoding='utf-8') as flist:
        lines = [line.strip() for line in flist]
        train_parameters['image_count'] = len(lines)

数据集链接:螺丝螺母目标检测数据集(430张)

相关推荐
Brduino脑机接口技术答疑16 小时前
TDCA 算法在 SSVEP 场景中的 Padding 技术:原理、应用与工程实现
人工智能·算法·机器学习·数据分析·脑机接口
TOPGUS16 小时前
深圳SEO大会深度复盘:验证趋势,洞见未来! —— by Daniel
人工智能·搜索引擎·ai·chatgpt·seo·网络营销
FPGA_ADDA16 小时前
ORIN+FPGA 高速采集AI 智能处理板
人工智能·fpga开发
mubei-12316 小时前
DPR:用于开放域问答的密集段落检索
人工智能·llm·检索增强生成·文本检索算法
GAOJ_K16 小时前
滚柱导轨精度等级如何匹配应用场景?
人工智能·科技·机器人·自动化·制造
RPA机器人就选八爪鱼16 小时前
RPA在银行IT运维领域的应用场景与价值分析
大数据·运维·数据库·人工智能·机器人·rpa
Niuguangshuo17 小时前
# PyTorch 中 `nn.ModuleList` 详解
人工智能·pytorch·python
2501_9428189117 小时前
AI 多模态全栈项目实战:Vue3 + Node 打造 TTS+ASR 全家桶!
vue.js·人工智能·node.js
CICI1314141317 小时前
藦卡机器人:让焊接更洁净、更精准、更智能
大数据·人工智能
嵌入式老牛17 小时前
面向能源领域的AI大模型工程化落地方法
人工智能·能源