动态规划理论基础(主要就是确定动态规划的几个步骤)
class Solution {
public:
int fib(int n) {
if(n == 0) return 0;
if(n == 1) return 1;
int dp1 = 0;
int dp2 = 1;
int dp3 = 0;
for(int i = 2;i <= n;i++) {
dp3 = dp1 + dp2;
dp1 = dp2;
dp2 = dp3;
}
return dp3;
}
};
class Solution {
public:
int climbStairs(int n) {
if(n == 1) return 1;
if(n == 2) return 2;
int dp1 = 1;
int dp2 = 2;
int dp3 = 0;
for(int i = 3;i <= n;i++) {
dp3 = dp1 + dp2;
dp1 = dp2;
dp2 = dp3;
}
return dp3;
}
};
题目3:746. 使用最小花费爬楼梯 - 力扣(LeetCode)
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
if(cost.size() == 1) return cost[0];
dp[0] = 0;
dp[1] = 0;
for(int i = 2;i <= cost.size();i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};