算法训练营day55 图论⑤ 并查集理论基础、107. 寻找存在的路径

本篇博客介绍并查集这种数据结构组织方法,以及适合解决的问题,理解并查集的很好的方法是跟着博客链接中的模拟步骤推导一遍

并查集理论基础

并查集常用来解决连通性问题。大白话就是当我们需要判断两个元素是否在同一个集合里的时候,我们就要想到用并查集。

并查集主要有两个功能:

  • 将两个元素添加到一个集合中。
  • 判断两个元素在不在同一个集合

原理:通过数据结构(数组)连接同一集合元素

路径压缩:将非根节点的所有节点直接指向根节点。

代码模板

通过模板,我们可以知道,并查集主要有三个功能。注意对于"寻根"的理解

  1. 寻找根节点,函数:find(int u),也就是判断这个节点的祖先节点是哪个
  2. 将两个节点接入到同一个集合,函数:join(int u, int v),将两个节点连在同一个根节点上
  3. 判断两个节点是否在同一个集合,函数:isSame(int u, int v),就是判断两个节点是不是同一个根节点

并查集模拟过程

cpp 复制代码
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}

优化思路

其实还有另一种方法:按秩(rank)合并。rank表示树的高度,即树中结点层次的最大值。但是很显而易见,这种合并方式不如之前的方式平缓,所以增益不是很显著

107. 寻找存在的路径

并查集主要解决集合问题,即:两个节点在不在一个集合,也可以将两个节点添加到一个集合中

成体不难,核心在于理解并查集的关键成员函数

python 复制代码
class UnionFind:
    def __init__(self, size):
        self.parent = list(range(size + 1))  # 初始化并查集
# range(size + 1) 生成一个从 0 到 size 的整数序列(包含 size 本身)
# list(range(size + 1)) 将这个序列转换为列表
    def find(self, u):
        if self.parent[u] != u:
            self.parent[u] = self.find(self.parent[u])  # 路径压缩
        return self.parent[u]

    def union(self, u, v):
        root_u = self.find(u)
        root_v = self.find(v)
        if root_u != root_v:
            self.parent[root_v] = root_u

    def is_same(self, u, v):
        return self.find(u) == self.find(v)


def main():
    import sys
    input = sys.stdin.read
    data = input().split()
    
    index = 0
    n = int(data[index])
    index += 1
    m = int(data[index])
    index += 1
    
    uf = UnionFind(n)
    
    for _ in range(m):
        s = int(data[index])
        index += 1
        t = int(data[index])
        index += 1
        uf.union(s, t)
    
    source = int(data[index])
    index += 1
    destination = int(data[index])
    
    if uf.is_same(source, destination):
        print(1)
    else:
        print(0)

if __name__ == "__main__":
    main()
相关推荐
天天爱吃肉821833 分钟前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
alphaTao44 分钟前
LeetCode 每日一题 2026/2/2-2026/2/8
算法·leetcode
甄心爱学习1 小时前
【leetcode】判断平衡二叉树
python·算法·leetcode
颜酱1 小时前
从二叉树到衍生结构:5种高频树结构原理+解析
javascript·后端·算法
不知名XL1 小时前
day50 单调栈
数据结构·算法·leetcode
@––––––2 小时前
力扣hot100—系列2-多维动态规划
算法·leetcode·动态规划
xsyaaaan2 小时前
代码随想录Day31动态规划:1049最后一块石头的重量II_494目标和_474一和零
算法·动态规划
Jay Kay2 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
Epiphany.5563 小时前
蓝桥杯备赛题目-----爆破
算法·职场和发展·蓝桥杯
YuTaoShao3 小时前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法三)DP 空间优化
算法·leetcode·职场和发展