Pytorch中乘法函数torch.matmul() 的一种用法

主要记录下torch.matmul(A,B)的用法中的一种情况:

当A,B有一个是3维以上,另一个是3维或3维以上时,如果想要使用torch.matmul(A,B),必须同时满足:

1.A和B的最后两个维度满足矩阵乘法的要求。例如A的维度是(3,1,3,3),B是(3,3,2),此时A的最后2维是(3,3),B是(3,2),符合条件

2.除去最后两个维度,A和B的其他维度要满足可以广播的条件。例如A的维度是(3,1,3,3),B是(3,3,2),除去最后两个维度,A剩下了(3,1),B是(3,),很明显此时满足广播条件

广播机制参考:Pytorch中的广播机制(Broadcast)_pytorch广播机制-CSDN博客

满足上述要求后,继续看如何执行 torch.matmul(A,B):

还是对于A的维度是(3,1,3,3),B是(3,3,2)的这个例子,假设相乘后的结果为C,那么C的维度可以按下面步骤求出:

1.A和B的最后两个维度执行矩阵乘法,得到的维度就是C的最后两个维度,也就是(3,2)

2.除去A和B的最后两个维度,其他维度进行广播后得到的维度是(3,3),这就是C的前几个维度

3.将上述维度合起来就是C的维度:(3,3,3,2)

关于torch.matmul(A,B)的更多用法参考:

Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果_torch.mm-CSDN博客

https://www.cnblogs.com/HOMEofLowell/p/15963140.html

https://zhuanlan.zhihu.com/p/638404226

相关推荐
丁浩66614 小时前
Python机器学习---1.数据类型和算法:线性回归
开发语言·python·机器学习·线性回归
流烟默14 小时前
机器学习中一些场景的模型评估与理解图表
大数据·人工智能·机器学习
H_z_q240114 小时前
Python动态类型、运算符、输入处理及算法编程问答
python
格林威14 小时前
近红外工业相机的简单介绍和场景应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造·工业相机
JJJJ_iii14 小时前
【机器学习07】 激活函数精讲、Softmax多分类与优化器进阶
人工智能·笔记·python·算法·机器学习·分类·线性回归
Pocker_Spades_A14 小时前
机器学习之生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
IT_陈寒14 小时前
Python性能优化:5个被低估但效果惊人的内置函数实战解析
前端·人工智能·后端
PieroPc15 小时前
用Python Streamlit sqlite3 写一个简单博客
数据库·python·sqlite
北堂飘霜15 小时前
新版简小派的体验
人工智能·求职招聘