Pytorch中乘法函数torch.matmul() 的一种用法

主要记录下torch.matmul(A,B)的用法中的一种情况:

当A,B有一个是3维以上,另一个是3维或3维以上时,如果想要使用torch.matmul(A,B),必须同时满足:

1.A和B的最后两个维度满足矩阵乘法的要求。例如A的维度是(3,1,3,3),B是(3,3,2),此时A的最后2维是(3,3),B是(3,2),符合条件

2.除去最后两个维度,A和B的其他维度要满足可以广播的条件。例如A的维度是(3,1,3,3),B是(3,3,2),除去最后两个维度,A剩下了(3,1),B是(3,),很明显此时满足广播条件

广播机制参考:Pytorch中的广播机制(Broadcast)_pytorch广播机制-CSDN博客

满足上述要求后,继续看如何执行 torch.matmul(A,B):

还是对于A的维度是(3,1,3,3),B是(3,3,2)的这个例子,假设相乘后的结果为C,那么C的维度可以按下面步骤求出:

1.A和B的最后两个维度执行矩阵乘法,得到的维度就是C的最后两个维度,也就是(3,2)

2.除去A和B的最后两个维度,其他维度进行广播后得到的维度是(3,3),这就是C的前几个维度

3.将上述维度合起来就是C的维度:(3,3,3,2)

关于torch.matmul(A,B)的更多用法参考:

Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果_torch.mm-CSDN博客

https://www.cnblogs.com/HOMEofLowell/p/15963140.html

https://zhuanlan.zhihu.com/p/638404226

相关推荐
winfredzhang几秒前
从Markdown到PPT:用Python打造专业演示文稿转换器
python·markdown·转换·pptx
PNP机器人几秒前
普林斯顿大学DPPO机器人学习突破:Diffusion Policy Policy Optimization 全新优化扩散策略
人工智能·深度学习·学习·机器人·仿真平台·franka fr3
Gyoku Mint8 分钟前
深度学习×第7卷:参数初始化与网络搭建——她第一次挑好初始的重量
人工智能·pytorch·rnn·深度学习·神经网络·算法·机器学习
mit6.82419 分钟前
[Vroom] 位置与矩阵 | 路由集成 | 抽象,解耦与通信
c++·人工智能·算法
Brian Xia25 分钟前
深度学习入门教程(三)- 线性代数教程
人工智能·深度学习·线性代数
lishaoan7730 分钟前
用TensorFlow进行逻辑回归(一)
人工智能·tensorflow·逻辑回归·分类器
boooo_hhh30 分钟前
第35周—————糖尿病预测模型优化探索
pytorch·深度学习·机器学习
302AI35 分钟前
全面刷新榜单,“全球最强 AI” Grok 4 评测:真实实力与局限性解析
人工智能·llm
强盛小灵通专卖员1 小时前
【中文核心期刊推荐】中国农业科技导报
人工智能·计算机视觉·期刊·中文核心期刊·导师·小论文
zskj_zhyl1 小时前
科技向善:七彩喜康养平台如何用智能技术弥合“数字鸿沟”?
人工智能·科技