代码随想录算法训练营day34 | 455.分发饼干、376. 摆动序列、53. 最大子序和

理论基础

贪心的本质是选择每一阶段的局部最优,从而达到全局最优。

刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心。

455.分发饼干

result和j变化一致,可以去除一个

python 复制代码
class Solution:
    def findContentChildren(self, g: List[int], s: List[int]) -> int:
        # 分配能满足孩子胃口的最小饼干。胃口排序,饼干也排序
        g.sort()
        s.sort()
        # 遍历饼干,如果当前饼干满足不了当前最小孩子的胃口,肯定也满足不了后续的孩子,饼干继续循环
        # 如果当前饼干满足了当前孩子的胃口,则当前饼干给当前孩子吃,结果+1,孩子胃口也向后遍历一个
        j = 0  # 胃口索引
        result = 0
        for i in s:
            if j < len(g) and g[j] <= i:
                result += 1
                j += 1
        return result

376. 摆动序列

这道题可以使用贪心,也可以使用动态规划。这道题对我来说挺难,还需要继续思考

使用贪心需要考虑情况较多

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return len(nums)  # 如果数组长度为0或1,则返回数组长度
        preDiff = 0  # 前一对元素的差值
        result = 1  # 记录峰值的个数,初始为1(默认最右边的元素被视为峰值)
        for i in range(len(nums) - 1):
            curDiff = nums[i + 1] - nums[i]  # 计算下一个元素与当前元素的差值
            # 如果遇到一个峰值
            if (preDiff <= 0 and curDiff > 0) or (preDiff >= 0 and curDiff < 0):
                result += 1  # 峰值个数加1
                preDiff = curDiff  # 注意这里,只在摆动变化的时候更新preDiff
        return result  # 返回最长摆动子序列的长度

使用动态规划

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        dp = [[0, 0] for _ in range(len(nums))]  # 创建二维dp数组,用于记录摆动序列的最大长度
        dp[0][0] = dp[0][1] = 1  # 初始条件,序列中的第一个元素默认为峰值,最小长度为1
        for i in range(1, len(nums)):
            dp[i][0] = dp[i][1] = 1  # 初始化当前位置的dp值为1
            for j in range(i):
                if nums[j] > nums[i]:
                    dp[i][1] = max(dp[i][1], dp[j][0] + 1)  # 如果前一个数比当前数大,可以形成一个上升峰值,更新dp[i][1]
            for j in range(i):
                if nums[j] < nums[i]:
                    dp[i][0] = max(dp[i][0], dp[j][1] + 1)  # 如果前一个数比当前数小,可以形成一个下降峰值,更新dp[i][0]
        return max(dp[-1][0], dp[-1][1])  # 返回最大的摆动序列长度

53. 最大子序和

本题可以用贪心,也可以用动态规划

贪心

python 复制代码
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        result = float("-inf")
        count = 0
        for num in nums:
            count += num
            result = max(count, result)
            if count < 0:
                count = 0
        return result
相关推荐
PAK向日葵4 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者6 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者6 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9367 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑8 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
C++、Java和Python的菜鸟10 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀10 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11210 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧10 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
myzzb11 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa