计算机视觉可视化工具SIBR使用方法

最近在跑实验时需要可视化3DGS/2DGS的重建后的图形界面,所以需要一个可视化工具,需要的软硬件要求如下:
Hardware Requirements

  • OpenGL 4.5-ready GPU and drivers (or latest MESA software)
  • 4 GB VRAM recommended
  • CUDA-ready GPU with Compute Capability 7.0+ (only for Real-Time Viewer)

Software Requirements

  • Visual Studio or g++, not Clang (we used Visual Studio 2019 for Windows)
  • CUDA SDK 11, install after Visual Studio (we used 11.8)
  • CMake (recent version, we used 3.24)
  • 7zip (only on Windows)

下面是具体的安装步骤:

一. Cmake下载

首先需要安装Cmake编译工具。
Cmake安装教程

二. 下载使用SIBR_viewer

一般就推荐Windows系统下载了,因为Ubuntu的可视化能力...你们懂的。

2.1 下载Windows二进制文件

SIBR_viewer二进制文件下载地址

2.2 使用SIBR_viewer来监测远程机情况

SINR_viewer是在本地Windows系统下运行的,我们需要将它连接到远程机(即模型所在的服务器)上进行数据监测,常见的命令如下所示:

  1. --path / -s
    功能:覆盖模型的数据源路径。用于指定数据集的路径。
    使用方法:
powershell 复制代码
	SIBR_remoteGaussian_app.exe --path <数据集路径>

或者

powershell 复制代码
	SIBR_remoteGaussian_app.exe -s <数据集路径>
  1. --ip
    功能:用于连接正在运行的训练脚本的IP地址。指定远程机器的IP地址。
powershell 复制代码
	SIBR_remoteGaussian_app.exe --ip <远程机器的IP地址>
  1. --port
    功能:用于连接正在运行的训练脚本的端口号。指定远程机器的端口号。
powershell 复制代码
	SIBR_remoteGaussian_app.exe --port <端口号>
  1. --rendering-size
    功能:定义网络渲染发生时的分辨率。接受两个空格分隔的数字(宽度和高度)。默认宽度是1200。如果要强制不同于输入图像的长宽比,还需要使用--force-aspect-ratio。
powershell 复制代码
    SIBR_remoteGaussian_app.exe --rendering-size <宽度> <高度>

如果需要强制长宽比:

powershell 复制代码
	SIBR_remoteGaussian_app.exe --rendering-size <宽度> <高度> --force-aspect-ratio
  1. --load_images
    功能:加载源数据集图像,在每个摄像机的顶视图中显示。
powershell 复制代码
	SIBR_remoteGaussian_app.exe --load_images

2.3 完整步骤总结

  1. 首先在远程机上启动训练过程
bash 复制代码
python train.py --ip 0.0.0.0 --port 6009

这条命令将训练过程启动,并使其监听所有网络接口上的端口6009。

  1. 接下来的操作均在本机上完成
  • 打开命令提示符cmd
  • 导航到SIBR_viewer的安装目录:
powershell 复制代码
cd C:\SIBR_viewer\bin
  • 运行SIBR_viewer并连接到远程机器:
powershell 复制代码
SIBR_remoteGaussian_app.exe --ip 192.168.1.100 --port 6009 --path C:\data\source_data --rendering-size 1920 1080 --load_images

以上就是全部的关键流程,码字不易,还请多多支持咩!

相关推荐
John_ToDebug17 小时前
深度解析 Chromium 浏览器 UI 刷新机制与 ThemeService 的核心作用
chrome·windows·ui
whitelbwwww20 小时前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785020 小时前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
元气满满-樱21 小时前
SSH远程服务管理
运维·ssh
Coovally AI模型快速验证21 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
oliveray1 天前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉
繁华似锦respect1 天前
C++ & Linux 中 GDB 调试与内存泄漏检测详解
linux·c语言·开发语言·c++·windows·算法
像风没有归宿a1 天前
AI绘画与音乐:生成式艺术是创作还是抄袭?
人工智能·深度学习·计算机视觉
weixin_468466851 天前
YOLOv11结构解析及源码复现
人工智能·深度学习·yolo·目标检测·计算机视觉·图像识别·yolov11
雨大王5121 天前
AI视觉检测怎么选?技术原理、行业应用与解决方案解析
人工智能·计算机视觉·视觉检测