【机器学习】【深度学习】批量归一化(Batch Normalization)

概念简介

归一化指的是将数据缩放到一个固定范围内,通常是 [0, 1],而标准化是使得数据符合标准正态分布。归一化的作用是使不同特征具有相同的尺度,从而使模型训练更加稳定和快速,尤其是对于使用梯度下降法的算法。而标准化的作用加快模型收敛速度,提高模型的性能。

批量归一化用于加速神经网络的训练并提高模型的稳定性。它在每个批次的数据上进行标准化,通过对每层的输入进行归一化处理,使得网络中间层的激活值保持在一个较小的范围内,有助于加速模型的收敛,同时减少了梯度消失和爆炸的问题。所以批量归一化特别适合深层网络。

为什么需要归一化

例如上边这个例子,右图神经网络有两个输入,分别是从3-34和从0-1000的范围。

输入范围的巨大差异会导致在前向传播和反向传播过程中,激活函数的输出也会有很大的波动。如果激活函数是非线性的,大范围输入可能会导致梯度消失或梯度爆炸问题。

输入范围的巨大差异也会导致损失函数在不同维度上的梯度变化不一致,使得优化算法难以有效收敛。

对输入使用归一化可以缓解以上问题,但是在训练后期仍可能出现梯度消失或梯度爆炸问题。这时我们就需要使用批量归一化了。

批量归一化层

批量归一化所做的是仅标准化输入,然后将数据输入到网络中,在网络中所有层的所有输出进行标准化,也就是每层之间都有批量归一化层。它所做的就是标准化数据并做一些其他的工作,然后输出给下一层。

加入批量归一化层的优点

稳定和加速训练过程:归一化减少了不同层之间输入数据分布的变化。

减少梯度消失和爆炸问题:保持零均值和单位方差。

起到轻微正则化的效果:每个小批量的均值和方差略有不同,微小随机性类似于Dropout正则化。

降低对权重初始化的敏感性:减少了调参的难度。

适用于更深的神经网络:深度神经网络往往面临梯度消失或爆炸的问题。

相关推荐
周杰伦_Jay3 分钟前
【后端开发语言对比】Java、Python、Go语言对比及开发框架全解析
java·python·golang
咖啡の猫5 分钟前
Python列表推导式
开发语言·python
2501_921649496 分钟前
外汇与贵金属行情 API 集成指南:WebSocket 与 REST 调用实践
网络·后端·python·websocket·网络协议·金融
美摄科技6 分钟前
一键成片SDK,AI智能剪辑引擎,精准理解内容语义
人工智能
落雪snowflake7 分钟前
compute_entropy函数
pytorch·python·深度学习
qq_386218999 分钟前
Agent
人工智能·agent
测试人社区-小明11 分钟前
医疗AI测试:构建安全可靠的合规体系
运维·人工智能·opencv·数据挖掘·机器人·自动化·github
shenzhenNBA12 分钟前
python用openpyxl操作excel-读取或创建excel文件
python·excel·读取excel·创建excel文件
小霖家的混江龙13 分钟前
大模型如何分辨 “狼” 和 “狗” —— 词向量的训练过程
人工智能·python·llm
大猫子的技术日记15 分钟前
【工具篇】极简入门 UV Python项目管理工具
开发语言·python·uv